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1. THE MARKET MODEL

Standard Model (Bachelier, Samuelson,...) for a

Financial Market with n stocks and d ≥ n factors:

dXi(t) = Xi(t)


bi(t)dt +

d∑

ν=1

σiν(t)dWν(t)


 , 1 ≤ i ≤ n.

Vector of rates-of-return: b(·) = (b1(·), . . . , bn(·))′.
Matrix of volatilities: σ(·) = (σiν(·))1≤i≤n,1≤ν≤d .

Assumption: for every T ∈ (0,∞) we have

n∑

i=1

∫ T

0




∣∣∣∣ bi(t)
∣∣∣∣ +

d∑

ν=1

(
σiν(t)

)2

 dt < ∞ , a.s.

All processes are adapted to a given flow of infor-

mation (or “filtration”) F = {F(t)}0≤t<∞ , which

satisfies the usual conditions and may be strictly

larger than the filtration generated by the driving

Brownian motion W (·) = (W1(·), . . . , Wd(·))′ .
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Solution of the equation

dXi(t) = Xi(t)


bi(t)dt +

d∑

ν=1

σiν(t)dWν(t)




for stock-price Xi(·) is written as

d (logXi(t)) = γi(t) dt +
d∑

ν=1

σiν(t) dWν(t) .

︸ ︷︷ ︸

Here a(·) := σ(·)σ′(·) is the covariance matrix, and

γi(t) := bi(t)−
1

2
aii(t)

︸ ︷︷ ︸

the growth-rate of the ith stock — in the sense

lim
T→∞

1

T

(
logXi(T )−

∫ T

0
γi(t)dt

)
= 0 a.s.,

at least when a(·) is bounded.

4



2. PORTFOLIOS AND GROWTH RATES

Portfolio: A vector process π(t) = (π1(t), . . . , πn(t))′
which is adapted to F and fully-invested: no short-
sales, no risk-free asset, to wit

πi(t) ≥ 0 ,
n∑

i=1

πi(t) = 1 for all t ≥ 0 .

———————————————————-

Value (wealth) V π(·) of portfolio:

dV π(t)

V π(t)
=

n∑

i=1

πi(t)
dXi(t)

Xi(t))
= bπ(t)dt+

d∑

ν=1

σπ
ν (t)dWν(t).

Here

bπ(t) :=
n∑

i=1

πi(t)bi(t)

︸ ︷︷ ︸
, σπ

ν (t) :=
n∑

i=1

πi(t)σiν(t)

︸ ︷︷ ︸
,

for ν = 1, . . . , d are, respectively, the portfolio rate-
of-return and the portfolio volatilities.
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¶ The solution of this equation

dV π(t)

V π(t)
= bπ(t)dt +

d∑

ν=1

σπ
ν (t)dWν(t)

is, very much like before:

d (logV π(t)) = γπ(t) dt +
d∑

ν=1

σπ
ν (t) dWν(t)

︸ ︷︷ ︸
.

• Portfolio growth-rate is

γπ(t) :=
n∑

i=1

πi(t)γi(t) + γπ∗ (t)
︸ ︷︷ ︸

.

• Excess growth-rate is

γπ∗ (t) :=
1

2




n∑

i=1

πi(t)aii(t)−
n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t)




︸ ︷︷ ︸
.

This is a non-negative quantity, positive if πi(t) > 0
for all i = 1, · · · , n.
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• Portfolio variance is

aππ(t) :=
d∑

ν=1

(σπ
ν (t))2 =

n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t) .

• Variance/Covariance Process, relative to the port-

folio π(·):

Aπ
ij(t) :=

d∑

ν=1

(
σiν(t)− σπ

ν (t)
) (

σjν(t)− σπ
ν (t)

)
.

¶ We have the invariance property

γπ∗ (t) =
1

2




n∑

i=1

πi(t)A
ρ
ii(t)−

n∑

i=1

n∑

j=1

πi(t)A
ρ
ij(t)πj(t)


 ,

for any two portfolios π(·) and ρ(·), and its conse-

quence:

γπ∗ (t) =
1

2

n∑

i=1

πi(t)Aπ
ii(t) .
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3. THE MARKET PORTFOLIO

Look at Xi(t) as the capitalization of company

i at time t (i.e., normalize always so that each

company has exactly one share outstanding).

Then X(t) := X1(t)+ . . . + Xn(t) is the total cap-

italization of the entire market, and

µi(t) :=
Xi(t)

X(t)
=

Xi(t)

X1(t) + . . . + Xn(t)
> 0

the “relative capitalization” of the ith company.

Clearly
∑n

i=1 µi(t) = 1 for all t ≥ 0, so µ(·) is

a portfolio process, called "market portfolio":

ownership of µ(·) is tantamount to ownership of

the entire market, since V µ(·) ≡ c.X(·); indeed,

dV µ(t)

V µ(t)
=

n∑

i=1

µi(t)
dXi(t)

Xi(t)
=

n∑

i=1

dXi(t)

X(t)
=

dX(t)

X(t)
.
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The excess growth rate of the market portfolio can
then be interpreted as a measure of intrinsic volatil-
ity available in the market:

︷ ︸︸ ︷
γ

µ∗ (t) =
1

2

n∑

i=1

µi(t)A
µ
ii(t)

︸ ︷︷ ︸
,

where

µi(t) :=
Xi(t)

X(t)
, σµ

ν (t) :=
n∑

i=1

µi(t)σiν(t)

and

A
µ
ij(t) :=

d∑

ν=1

(
σiν(t)− σµ

ν (t)
) (

σjν(t)− σµ
ν (t)

)
.

An average, according to capitalization weight, of
the variances of individual stocks – not in absolute
terms, but relative to the market.

This quantity will turn out to be very important in
what follows.
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4. RELATIVE ARBITRAGE

Given two portfolios π(·) , ρ(·) and a real constant

T > 0, we shall say that π(·) is an arbitrage op-

portunity relative to ρ(·) over the time-horizon

[0, T ], if we have

P [V π(T ) ≥ V ρ(T )] = 1 ,

P [V π(T ) > V ρ(T )] > 0

whenever the two portfolios start with the same

initial fortune V π(0) = V ρ(0) = 1 .

10



NOTE: With a “reasonable” (e.g. bounded) volatil-

ity structure, the existence of relative arbitrage pre-

cludes the existence of an Equivalent Martingale

Measure (EMM).

• Indeed, if we can find a “market-price-of-risk”

ϑ(·) with

σ(·)ϑ(·) = b(·) and
∫ T

0
||ϑ(t)||2 dt < ∞ a.s.,

then it can be shown that the exponential process

Z(t) := exp
{
−

∫ t

0
ϑ′(s) dW (s)− 1

2

∫ t

0
||ϑ(s)||2 ds

}

is a local (and super) martingale, but not a mar-

tingale: E[Z(T )] < 1 .

. Same for Z(·)Xi(·) : E[Z(T )Xi(T )] < Xi(0) ,

i = 1, · · · , n.

11



5. Functionally-generated portfolios

Start with a concave, smooth function S : ∆n
+ →

R+ , consider the portfolio π(·) generated by it:

πi(t)

µi(t)
:= Di logS(µ(t)) + 1−

n∑

j=1

µj(t) ·Dj logS(µ(t)) .

Then an application of Itô’s rule gives the "master

equation"

log

(
V π(T )

V µ(T )

)
= log

(
S(µ(T ))

S(µ(0))

)
+

∫ T

0
g(t) dt

︸ ︷︷ ︸
,

where, thanks to our assumptions,

g(t) :=
−1

S(µ(t))

∑

i

∑

j

D2
ijS(µ(t)) · µi(t)µj(t)A

µ
ij(t)

is a non-negative quantity.

Significance: Stochastic integrals have been exci-

sed, and we can begin to make comparisons that
are valid with probability one (a.s.)...
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6. SUFFICIENT INTRINSIC VOLATILITY

LEADS TO ARBITRAGE RELATIVE TO THE

MARKET

Proposition: Assume that over [0, T ] there is

"sufficient intrinsic volatility" (excess growth):
∫ T

0
γ

µ∗ (t)dt ≥ ζT
︸ ︷︷ ︸

, or
︷ ︸︸ ︷
γ

µ∗ (t) ≥ ζ , 0 ≤ t ≤ T

holds a.s., for some constant ζ > 0 . Take

T > T∗ :=
H(µ(0))

ζ
, and H(x) := −

n∑

i=1

xi logxi

the Gibbs entropy function. Then the portfolio

πi(t) :=
µi(t) (c− logµi(t))∑n

j=1 µj(t) (c− logµj(t))︸ ︷︷ ︸
, i = 1, · · · , n

is generated by the function S(x) := c + H(x) on

∆n
+ ; and for c > 0 sufficiently large, it represents

an arbitrage relative to the market.

13



¶ Sketch of Argument: Note S(x) := c + H(x) is
bounded both from above and below:

0 < c < S(x) ≤ c + logn , x ∈ ∆n
+ .

The “master equation”

log

(
V π(T )

V µ(T )

)
= log

(
S(µ(T ))

S(µ(0))

)
+

∫ T

0
g(t) dt

︸ ︷︷ ︸

takes care of the rest, because now the integral of

g(·) = · · · =
γ

µ∗ (·)
S(·) ≥ γ

µ∗ (·)
c + logn

dominates ζ T/ (c + logn) : if you have a constant
wind on your back, sooner all later you’ll overtake
any obstacle – e.g., the constant log

(
(c+logn)/c

)
.

This leads to relative arbitrage for sufficiently large
T > 0 , indeed to P[V π(T ) > V ρ(T ) ] = 1 .
. (Intuition: you can generate arbitrage if there is
“enough volatility” in the market...)

Plot of cumulative excess growth T 7→ ∫ T
0 γ

µ∗ (t) dt
over the period 1926-1999, in [FK] (2005).
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7. NOTIONS OF MARKET DIVERSITY

MAJOR OPEN QUESTION: Is such relative arbi-

trage possible over arbitrary time-horizons, under

the conditions of this Proposition?

Partial Answer #1: YES, if the variance/covariance

matrix a(·) = σ(·)σ′(·) has all its eigenvalues bounded

away from zero and infinity: to wit, if we have (a.s.)

κ|| ξ||2 ≤ ξ′a(t)ξ ≤ K|| ξ||2 , ∀ t ≥ 0, ξ ∈ Rd (1)

for suitable constants 0 < κ < K < ∞ .

In this case one can show

κ

2

(
1− µ(1)(t)

)
≤ γ

µ∗ (t) ≤ 2K
(
1− µ(1)(t)

)

︸ ︷︷ ︸

for the maximal weight in the market

µ(1)(t) := max
1≤i≤n

µi(t) .
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Thus, under the structural assumption of (1), the

“sufficient intrinsic volatility” (a.s.) condition
∫ T

0
γ

µ∗ (t)dt ≥ ζT
︸ ︷︷ ︸

, or
︷ ︸︸ ︷
γ

µ∗ (t) ≥ ζ , 0 ≤ t ≤ T

of the Proposition, is equivalent to the (a.s.) re-

quirement of market diversity
∫ T

0
µ(1)(t)dt ≤ (1− δ)T

︸ ︷︷ ︸
, or

︷ ︸︸ ︷
max

0≤t≤T
µ(1)(t) ≤ 1− δ

for some δ ∈ (0,1) (weak and strong, respectively).

¶ When (weak) diversity prevails, and with fixed

p ∈ (0,1) , the simple diversity-weighted portfolio

π
(p)
i (t) :=

(
µi(t)

)p

∑n
j=1

(
µj(t)

)p , ∀ i = 1, . . . , n

also leads to arbitrage relative to the market, over

sufficiently long time horizons.

. Appropriate modifications of this rule generate

such arbitrage over arbitrary time-horizons.

16



8. AN ABSTRACT MODEL: STABILIZA-
TION BY VOLATILITY

Partial Answer #2: YES, for the (non-diverse)
VOLATILITY-STABILIZED model that we broach now.

Consider the abstract market model

d

(
logXi(t)

)
=

α dt

2µi(t)
+

1√
µi(t)

dWi(t)

︸ ︷︷ ︸

for i = 1, · · · , n with d = n ≥ 2 and α ≥ 0 . In
other words, we assign the largest volatilities and
the largest log-drifts to the smallest stocks . The
model amounts to solving in the positive orthant of
Rn the system of degenerate stochastic differential
equations, for i = 1, · · · , n :

dXi(t) =
1 + α

2

(
X1(t)+ · · ·+Xn(t)

)
dt

+

√
Xi(t)

(
X1(t) + · · ·+ Xn(t)

)
· dWi(t) .
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General theory: Bass & Perkins (TAMS 2002).
Shows this system has a weak solution, unique
in distribution, so the model is well-posed. Bet-
ter still: it is possible to describe this solution
fairly explicitly, in terms of Bessel processes.

X An elementary computation gives the quantities

γ
µ∗ (·) ≡ n− 1

2
=: ζ > 0 , aµµ(·) ≡ 1

for the market portfolio µ(·) , and

γ µ(·) ≡ (1 + α)n− 1

2
=: γ > 0 .

Despite the erratic, widely fluctuating behavior of
individual stocks, the overall market performance is
remarkably stable. In particular, the total market
capitalization is

X(t) = X1(t) + . . . + Xn(t) = x · e γt+B(t) ,

for the scalar Brownian motion

B(t) :=
n∑

ν=1

∫ t

0

√
µν(s) dWν(s) , 0 ≤ t < ∞ .
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¶ We call this phenomenon stabilization by volatil-

ity: big volatility swings for the smallest stocks,

and smaller volatility swings for the largest stocks,

end up stabilizing the overall market by producing

constant, positive overall growth and variance.

(Note κ = 1 but K = ∞, so (1) fails.)

X The condition γ
µ∗ (·) ≥ ζ > 0 of the Proposition

on slide 12 is satisfied here, with ζ = (n − 1)/2 .

Thus the model admits arbitrage opportunities rel-

ative to the market, at least on time-horizons [0, T ]

with T > T∗ with

T∗ :=
2H(µ(0))

n− 1
<

2 logn

n− 1
.

The upper estimate (2 logn)/(n − 1) is a rather

small number if n = 5000 as in Whilshire.

. This makes plausible the earlier claim, proved re-

cently by A.Banner and D.Fernholz, that such ar-

bitrage is now possible on any time-horizon.
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• What is the long-term-growth behavior of an in-

dividual stock? A little bit of Stochastic Analysis
provides the Representations

Xi(t) =
(
Ri(Λ(t))

)2
, 0 ≤ t < ∞

︸ ︷︷ ︸
, i = 1, · · · , n

and

X(t)︸ ︷︷ ︸ = X1(t)+· · ·+Xn(t) = x e γt+B(t) =
(
R(Λ(t))

)2

︸ ︷︷ ︸
.

Here

4Λ(t) :=
∫ t

0
X(s) ds = x

∫ t

0
e γs+B(s) ds ,

whereas R1(·), · · · , Rn(·) are independent Bessel
processes in dimension m := 2(1 + α) ; that is,

dRi(u) =
m− 1

2Ri(u)
du + dŴi(u)

with Ŵ1(·), · · · , Ŵn(·) independent scalar Brownian
motions. Finally,

R(u) :=

√ (
R1(u)

)2
+ · · · +

(
Rn(u)

)2

is Bessel process in dimension mn.
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We are led to the skew representation (I.Goia)

R2
i (u) = R2(u) · µi

(
4

∫ u

0

du

R2(u)

)
, 0 ≤ u < ∞

where the vector µ(·) = (µi(·))n
i=1 of market-weights

µi(·) = (R2
i /R2)(Λ(·)) is independent of the Bessel

process R(·) .

This µ(·) is shown to be a vector Jacobi process

with values in ∆n
+ and dynamics

dµi(t) = (1+α)
(
1−nµi(t)

)
dt+

(
1−µi(t)

)√
µi(t) dβi(t)

− µi(t)
∑

j 6=i

√
µj(t) dβj(t) , i = 1, · · · , n

(variances µi(1− µi) , covariances −µiµj ).
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This also suggests the distribution of the vector
(

Q1

Q1 + · · ·+ Qn
, · · · ,

Qn

Q1 + · · ·+ Qn

)
,

where Q1, · · · , Qn are independent random vari-

ables with common distribution

2−(1+α)

Γ(1 + α)
qα e−q/2 dq , 0 < q < ∞ ,

(chi-square with “2(1 + α)-degrees-of-freedom”),

as the invariant measure for the ∆n
+ -valued diffu-

sion µ(·) = (µi(·))n
i=1 .
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¶ From these representations, one obtains the (a.s.)
long-term growth rates of the entire market and of
the largest stock

lim
T→∞

1

T
logX(T ) = lim

T→∞
1

T
log

(
max
1≤i≤n

Xi(T )

)
= γ ;

the long-term growth rates for individual stocks

lim
T→∞

1

T
logXi(T ) = γ

︸ ︷︷ ︸
, i = 1, · · · , n (2)

for α > 0 ; their long-term volatilities

lim
T→∞

1

T

∫ T

0

dt

µi(t)
=

2 γ

α
= n +

n− 1

α︸ ︷︷ ︸

(for α > 0 , using the Birkhoff ergodic theorem);
that this model is not diverse; and much more...

NOTE: When α = 0 , the equation (2) holds only
in probability; the (a.s.) limit-superior is (γ),
whereas the (a.s.) limit-inferior is (−∞) .
(Spitzer’s 0-1 law for planar Brownian motion).
Crashes.... Failure of diversity... .
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8. SOME CONCLUDING REMARKS

We have exhibited simple conditions, such as “suf-

ficient level of intrinsic volatility” and “diversity”,

which lead to arbitrages relative to the market.

These conditions are descriptive as opposed to

normative, and can be tested from the predictable

characteristics of the model posited for the market.

In contrast, familiar assumptions, such as the exis-

tence of an equivalent martingale measure (EMM),

are normative in nature, and cannot be decided

on the basis of predictable characteristics in the

model; see example in [KK] (2006).
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The existence of such relative arbitrage is not the

end of the world. Under reasonably general con-

ditions, one can still work with appropriate “defla-

tors” for the purposes of hedging derivatives and

of portfolio optimization.

Considerable computational tractability is lost, as

the marvelous tool that is the EMM goes out of

the window; nevertheless, big swaths of the field

of Mathematical Finance remain totally or mostly

intact, and completely new areas and issues thrust

themselves onto the scene.
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