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AGENDA

Brief review of the standard model for single name credit default swaps and
similar default contingent claims.

Show how to exactly replicate default contingent claims with (many) standard
CDS and relate this to arbitrage based pricing.

Show how to super-replicate default contingent claims with (a few) standard
CDS and relate this to arbitrage bounds on pricing.
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The standard modeling framework for single name credit default swaps and re-
lated default contingent claims (Bloomberg function CDSW <GO>) is carried
out as if the following assumptions are valid:

1. Default free interest rates are deterministic.

2. Recovery in case of default is a deterministic fraction of par.

3. Perfect markets, including no default on CDS contracts.

4. Default happens in a wholly unpredictable manner, with the "risk neutral"
probability of default during the short time interval (t; t + �) given by
�(t)�, given no default until time t. Here, �(t) is assumed known as of
the present, which is denoted by t = 0.
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With these assumptions in place, we can choose a functional form for �(t), e.g.
piecewise constant, calibrate this function to observable CDS quotes, and value
all default contingent cash �ows by computing their risk neutral expectation
and discounting at the current default free interest rates.

Does this modeling framework really make sense?

It seems to work in practice � there are trillions of dollars of CDS out there,
generally being "marked to market" in this framework.

Can we get it to work in theory?

4



AS IF!
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It turns out the standard pricing approach is supported by traditional arbitrage
arguments in a much more general setting.

We will retain assumptions 1 and 2, but completely relax the assumptions on
the default generating process.

Consider a discrete time economy, with a day being the smallest unit of time,
in line with conventions in both CDS and money markets.

Two minor simpli�cations: no accounting for weekends/holidays, and we as-
sume that CDS contracts have daily premium payments.

We will scale interest rates and CDS premiums to be on a per day basis.
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Denote the default time as � 2 N. A pure default contingent claim is character-
ized by two deterministic functions of time: cn and Rn; where our convention
is that the claim pays out $cn per day for n � � , and $Rn at n = � . There
will be some "maturity date" N , such that cn = Rn = 0; 8n > N .

A key example of a pure default contingent claim is a standard CDS of maturity
N with notional Q, where cn = �SNQ and Rn = LQ; 8n � N , where
L 2 (0; 1] is the assumed fractional loss given default on the underlying name
and SN is the market CDS premium for maturity N .

Default contingent claims that require model based valuation arise naturally
from trading of standard CDS, hedging bonds with CDS, and/or trading single
name CDS against an index.
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Fix an underlying name and a "target" default contingent claim represented
by fcn; Rng with maturity N . Assume that we have CDS available for all
maturities n = 1; 2; :::; N , with premium quotes fS1; S2; :::; SNg.

Goal: Find a static CDS replication strategy, given by writing protection on
notionals of fQ1; Q2; :::; QNg 2 RN , along with an amount to be deposited
in a money market account at time zero, M0 2 R, such that the target cash
�ows are replicated regardless of when the underlying name defaults.

Strategy 1: A binomial type of backward recursion, where for each day the risk
is that default may or may not happen on that day and the available controls
are the quantity of CDS maturing on this day and the amount of money to hold
in the money market account, all assuming that default has not yet happened.
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If the default time � > n, the money market account grows by one day of in-
terest and is a¤ected by payment of target coupon and receipt of CDS premium
payments (either of which could be negative):

Mn+1 =Mn (1 + rn)� cn+1 +
NX

k=n+1

SkQk (1)

If � = n, we need to have just enough money to settle the target claim, after
accounting for terminal CDS payments:

Mn � L
NX
k=n

Qk �Rn = 0 (2)
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We can take the di¤erence between expression (2) evaluated at two consecutive
days to isolate the value of Qn:

Qn =
R
0
n �M

0
n

L
(3)

where the prime denotes a forward �rst di¤erence in time.

Substituting (3) into (1) and once again taking a �rst di¤erence and simplifying
result in the following linear second order di¤erence equation for the survival
contingent money market account balance:

M
00
n�1 � rnM

0
n�1 �

Sn

L
M

0
n � r

0
n�1Mn�1 = �

Sn

L
R
0
n � c

0
n (4)
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Using the natural terminal conditions that MN = MN+1 = 0, we can recur-
sively solve (4) to obtain the initial required money market account balance,
M0, and along the way we can use (3) at each step to get the static portfolio
of CDS that will replicate the target claim.

Since each CDS in the replicating portfolio is costless at inception, the no
arbitrage value of the target claim is given by M0.

We made no assumptions on the nature of the randomness of the default time
in this derivation, so M0 will be compatible with any arbitrage free default
dynamics consistent with the initial CDS curve, and in particular it is consistent
with the standard market model.

11



The case of the target claim being a risky annuity is worth special consideration.
We haveRn � 0, and cn = �fn�Ng, and so the right hand side of (4) becomes
�n;N , which suggests that the risky annuity value, as a function of its maturity,
is the Green�s function of the ODE.

To derive the forward equation for the risky annuity value, let Hn denote the
risk neutral probability of survival to time n. By the replication argument
above, the risk neutral probability measure will be unique.

Direct valuation of a risky annuity to maturity n � 1 gives:

An =
nX
k=1

PkHk�1 (5)
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Taking the �rst di¤erence in n and re-arranging gives:

Hn =
An+1 �An
Pn+1

(6)

The balance equation for a CDS contract of maturity n can be written as:

SnAn = L
nX
k=1

Pk
�
Hk�1 �Hk

�
(7)
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Taking the �rst di¤erence in n, substituting in for Hn and simplifying gives:

A
00
n + rn+1A

0
n+1 +

Sn+1
L

A
0
n +

S
0
n

L
An = 0 (8)

where we note that A0 = 0 and A1 = P1 (and S0 can be set to an arbitrary
�nite amount in the calculation of A2).

The advantage of the forward equation is that we can solve for the present
value of risky annuities of all maturities in a single "sweep". With these in
hand, we can represent the value of an arbitrary target claim as:

M0 =
1X
n=1

An

�
�Sn
L
R
0
n � c

0
n

�
(9)
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Strategy 2: Attempt to set up and solve a system of simultaneous equations
characterizing the replicating portfolio.

We can usefully di¤erentiate between N+1 default times, given by � = 1; � =
2; :::; � = N; � > N . Conditional on any such default time, we can compute
the present value of all cash �ows relating to the target claim and the replicating
CDS portfolio. Equating each resulting present value with the initial value of
the money market account gives rise to N+1 linear equations in N+1 unknowns.

While direct solution of the resulting linear system is not computationally ef-
�cient for the valuation and hedging of a single contingent claim, it is worth
exploring for its general properties, and as a starting point for super-replication
in incomplete markets.
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For each � = m � N we have the restriction:

M0 =
mX
j=1

Pj

0@ NX
k=j

SkQk � cj

1A� Pm
0@L NX

k=m

Qk +Rm

1A (10)

where the discount factors are found as Pn =
Qn
i=1(1+ ri)

�1, and for � > N
we need:

M0 =
NX
j=1

Pj

0@ NX
k=j

SkQk � cj

1A (11)
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We can organize the N+1 equations in N+1 unknowns on the last page into
the matrix form Ax = b, where

x = [Q1; Q2; :::; QN ;M0]
0

bn = PnRn +
min(n;N)X
j=1

Pjcj (12)

Am;n =

0B@min(m;n;N)X
j=1

Pj

1CASn � PmL�fm�n�Ng
Am;N+1 = �1
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As long as there are no arbitrage opportunities in the CDS prices, this system
of equations will have a unique solution, of the form

x = A�1b (13)

Note that the last element of the vector x is the replication based value of the
target claim (M0), whereas the �rst N elements represent the replicating CDS
portfolio.

We can (if we so choose) interpret the elements of the last row of the matrix
A�1 as (minus) the risk neutral probability of default on each date.

These probabilities are independent of the target claim, so (8) represents a
general solution to the replication based pricing problem.
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Consider the alternative problem of �nding the combination of a static CDS
portfolio for a given set of maturities along with a trajectory of the survival
contingent money market balance that will minimize the initial cost while always
providing at least enough cash to settle the target default contingent claim.

Speci�cally, we have credit default swaps with maturities fm1;m2; :::;mKg
and premiums fS1; S2; :::; SKg, where 1 � K � N , and where we use Sk
and Qk as shorthand notation for Smk and Qmk, and where we assume for
convenience that mK = N .
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The no-default dynamics of the money market account balance is now:

Mn+1 =Mn (1 + rn)� cn+1 +
KX
k=1

SkQk�fmk�n+1g (14)

and in case of default we have the inequality:

Mn � L
KX
k=1

Qk�fmk�ng �Rn � 0 (15)

The goal is to minimize M0, subject to (9) and (10), for an optimal choice of
fQ1; Q2; :::; QKg.
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The general approach to the super-replication problem is to consider a modi�ed
version of the matrix A, call it �A, where we only include theK+1 columns cor-
responding to the available hedging instruments, i.e. fm1;m2; :::;mK; N + 1g.

We now have the following optimization problem to solve:

min xN+1 s:t: �Ax � b (16)

As this is a linear program, it can be solved e¢ ciently with standard LP software.
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The graph shows the cost of sub- and super-replication strategies for a 10Y pure
default leg, paying $1,000 upon default. The CDS curve is linearly increasing
from 1% to 5% and interest rates are �at at 5%.
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The di¤erence between the cost of super-replication and exact replication mea-
sures how far a target claim lies from the span generated by the pay-o¤s of the
available credit default swaps.

We can turn a pure default leg into a pure premium leg (risky annuity) with a
single CDS, so the picture is representative of our ability to replicate any single
CDS leg.

The cost of super-replication is sub-additive, so it will always be cheaper to
super-replicate a portfolio than its components.

We can obtain good bounds on the value of claims with a reasonable set of
available CDS contracts (we don�t really need daily maturities!).

23


