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1. Risk Measurement under Solvency II 
 
 

Solvency II - Aim 
 
• To harmonize the right of supervision in insurances throughout the EU 
 

• To bring it in line with the supervision rules for credit institutes (Basel II) 
 

• Development of a solvency system which represents the real risks of an insurer 
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1. Risk Measurement under Solvency II 
 
 

• Solvency Capital Requirement (SCR) is defined in terms of Sandström (2006) as 
the difference between an appropriate risk measure and equity capital per risk 
(expected value as base factor plus surcharges (see principle of premium 
calculation)). 

 
• The SCR is a multiple of the standard deviation of risk when managing normally 

distributed risks. 
 
• The SCR for the whole risk is calculated by the second root of sum of squares of 

single SCR’s. [(→ square root formula of NAIC = National Association of 
Insurance Commissioners / IAA = International Actuarial Association; German 
standard model of GDV = German Insurance Association / BaFin = Federal 
Financial Supervisory Authority)]. 



 
1. Risk Measurement under Solvency II 

 
 
Definition (Coherent Measure of Risk): 
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A risk measure R  on the set  of real-valued random variables (risks) is 
called coherent in terms of ARTZNER, DELBAEN, EBER and HEATH (1999) if it satisfies 
the following four axioms: 

( ) ZR ⊆D

 

R  is called positively homogeneous, if (1) A risk measure 
 

( ) ( )cX c R= 0  and  ;c X≥ ∈Z�X  for all  R
 

R  is called translation invariant, if for all  and  X ∈Z :c∈\

( )
(2) A risk measure 
 

( )R X c R X+ = + c ; 
 

R  is called monotone, if for any two random variables Z� ,X Y ∈(3) A risk measure 
 

X Y≤ ( implies ) ( )R ;X R Y≤  
 

R  is called subadditive, if (4) A risk measure 
 

( ) ( ) ( )X Y R X+ ≤ , .X Y Z�∈R Y+  for all  R



 
1. Risk Measurement under Solvency II 

 
 
The international discussion about risk measure to calculation of the solvency capital 
(IAA, DAV, SST) with regard to the aggregate claim S  concentrates on 
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( )Value at Risk: ( ) ( ) ( ) { }1
1: 1 infS SVaR S q S F xα α α α−
−= = − = 1F x∈ ≥\

1/α

− ; 
 
[which is also called 
 

Probable Maximum Loss (PML) with a return period  
 

in the actuarial practice] 
 
and 
 

Expected Shortfall: ( ) ( )( ):  ES S E S Sα α= ≥ .       VaR S   



 
1. Risk Measurement under Solvency II 

 
 

 

μ

 

ESα VaR: “average” of all values  above α   
SCR, SCR : safety loading    
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i ( ),SCR iαThe Solvency Capital Requirement (SCR) for every individual risk ,  is 
defined as the difference between the Value at Risk (VaR) and expected value (net 
premium income), 

( ) ( ) .i ikαμ σ=

,

VaR iSCR iα α= − ⋅  
 

Therefore, the total Solvency Capital Requirement,  (which is called square 
root formula) in the case of normal distributions is given by  

GesamtSCR

 

( )( ) ( )( ) ( )( )

1                        
gesam i jSCR SCR⋅

2

1                                        

2

    

2

2

n

ì i j

n

i i i

i

i j j
i i j

i

i jt

jR X R X R X

SCR SCR

μ

ρ

ρ μ μ

= <

= <

= +

= −

⋅

+ − −

∑ ∑∑

∑ ∑∑
 

 

in consideration of for example of pairwise correlation between risk iX  and risk jX  
 

( )i jij ( ) ( )i jE X Xρ = −E X E X .



 
1. Risk Measurement under Solvency II 

 
 

(The concept of the “square root formula” has the following background: let )VaR iα

α ,i

 
be the Value at Risk (VaR) to the risk level  for every individual risk X  then we 
can write 
 

( ) iVaR i kα ασ ,k \α ∈

iμ \ iσ

i

iμ += ,  
 
where  is the expected value ( ) and  denotes the standard deviation 
( ). 

iμ ∈
0iσ ≥

 
X  are normally distributed, then If the risks 
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( )    with   1 1kα α−=Φ − ( ) ( )
2

  1 exp
22

x xux du u duϕ
−∞

⎟⎟ =⎟⎟

kα μ iσ 1, ,i n= …

π −∞

⎛ ⎞⎜Φ = −⎜⎜⎜⎝ ⎠∫ ∫ , 

 
where  is independent from  and  for . i



 
1. Risk Measurement under Solvency II 

 
 
Similar: The Expected Shortfall (ES) for normally distributed individual risk iX  is 
given by 

( )2

2

2

k

ii i i( )S iE α

e
α

ασ
π

μ μ
α

−

= + = + ( )1 1kα α−=Φ −τ σ  with . 

 
Comment: 
• If the risks are normally distributed then the Value at Risk is a coherent risk 

measure for 1  0 .kα

⎛ ⎞⎜≥ ⇔⎜⎜⎝ ⎠2
α ⎟≤ ⎟⎟

• If the risks are normally distributed then the mutual dependence structure of the 
risks is completely and explicitly determined through the pairwise correlations. 

 
Conclusion: 
The square root formula is consistent with the definition of Solvency Capital 
Requirement for both risk measures if the risks are normally distributed. 
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1. Risk Measurement under Solvency II 
 

 
But: 
• If the risks are not normally distributed then the Value at Risk is not in general a 

coherent risk measure.  
 

• If the risks are not normally distributed then the premium principle (standard 
deviation principle) of the square root formula is not coherent. 

 

• If the risks are not normally distributed then the mutual dependence structure of 
the risks is not explicitly determined through the pairwise correlations. 
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2. Copulas 
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C [0,1]d

[0,1]
( )u [0,1]d

k=u
C ≤a 1]d CΔ b

a

, ] [ ,d da b a b= × ×a b "

(1 ) 0.d dbε+ − ≥

Definition: 
A copula is a function  of d variables on the unit d-cube  with the following 
properties: 
 

1. the range of C is the unit interval ; 
u2.  is zero for all  in  for which at least one coordinate equals zero; 

u
C

3. u  if all coordinates of  are 1 except the k-th one; ( )C
4.  is d-increasing in the sense that for every b  in  the measure  

assigned by C  to the d-box ] is nonnegative, i.e. 
[0,

1 1[ , ] [
 

( )
( ) { }

1

1

1 1 1 1
, , 0,1

: ( 1) (1 ) , ,

d

i
i

d
n

d dC C a b a
ε

ε ε

ε ε ε=

∈

∑
Δ = − + −∑b

a
"

"  

 
In other words:  
 

A copula C is a multivariate distribution function of a random vector that has 
continuous uniform margins.  



 
2. Copulas 

 
 

Sklar’s Theorem: 
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1, , nLet H denote a n-dimensional distribution function with margins .F F…

1( , ,
 Then there 

exists a n-copula C such that for all real )nx… , x
 

( )11 1( , , ) (H x ,) ( .,n n nF FC )x x=… …

1
1 , , n

x  
 
If all the margins are continuous, then the copula is unique, and is determined uniquely 
on the ranges of the marginal distribution functions otherwise. Moreover, the converse 
of the above statement is also true. If we denote by 1F F− …

1( , , nu …

1
1), , ( ) .nnF u

−  the generalized 
inverses of the marginal distribution functions, then for every )u  in the unit   
n-cube, 
 

( )1
1 1( , , ) (n FHuC u u− −=… …



 
2. Copulas 

 
 

Fréchet-Hoeffding-bounds: 
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) { }: min , , ,nu u=

2n>

( ) ( ) (1 1
1

max 1 ,0 : , ,
n

n n
i n

i

u n u uu C uW M
=

⎧ ⎫⎪ ⎪⎪ ⎪+ − = ≤ ≤⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ … …  

 

             not a copula for                                                always a copula 
 

                                            
 



 
2. Copulas 

 
 

Definition (Comonotonicity): 
 

The random variables (risks)  are called comonotonic (perfectly 
positive dependent), if they have the Fréchet-Hoeffding upper bound as copula: 

1X X, , n ∈Z…

{ 1min ,n u=u …M n
 

( ) }  for any , nu I∈ .n∈`u  and  
 

Definition (Countermonotonicity): 
The random variables (risks)  are called countermonotonic (perfectly 
negative dependent), if they have the Fréchet-Hoeffding lower bound as copula: 

,X Y ∈Z

 

( ) { }2
1 2, max 1 2u u u u= + −W 2

1 2, .u u I∈1,0  for any  
 

Wide-spread fallacy: Comonotonic risks increase total risk, countermonotonic risks 
decrease total risk (→ diversification effect) 
 

This is wrong in general!   
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2. Copulas 

 
 

Definition: 
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Let ;  define intervals ,d n ∈`
1 , , ( :)

1

1
d

d

,j j
i i j

i i
I n

n n=

⎛ ⎤−⎜ ⎥⎜
⎝

= ⎜ ⎥⎜ ⎦
×"

1, , : 1, ,d ni i N n∈ =… (

 for all possible choices 

}.…  For every d-tuple { )1i i N, , d
d n , let n  be a non-

negative real number with the property 
∈…

1 , , ( )
di ia "

 

( )
1 , ,

1( )
di ia n

n
="

1( , , ) kdi i J i∈
∑

"

{1, ,  and 1,kk d i∈ ∈… … (

 

 
for all }n  with { } , , ) ( ){ }1: , , |d

k n n kJ i j j N j i= ∈…

( , )
( )

,

:
d

id
d n

d

i i N
nnc n

∈

= ∑ "
"

, ) .d
d ni N∈ A1

,k=  then 

the function 1  is the density of a d-dimensional 

copula, called grid-type copula with parameters  Here  
denotes the indicator random variable of the event A, as usual. 

, ,11 , , )(
idi Iia n"

1 1, , | ( ,( )
di i ia n"

1

{ }…



 
2. Copulas 

 
 

It is easy to see that in case of an absolutely continuous d-dimensional copula C, with 
continuous density  

 

( ) ( ) ( )1 1
1

, , , , , ( )1, , 0,1
d

d
d d d

d

u u u u u u
u u

c C∂
= ∈

∂ ∂
… … …

…
,  

 

c can be approximated arbitrarily close by a density of a grid-type copula. The 
classical multivariate mean-value-theorem of calculus tells us here that we only have 
to choose 
 

( )

1

1

1 , , ( )
di ia n… 1 1 1

1 1

: , , , , ,

d

n

n

d

i i
n n

d d d n
ii

nn

u u du du C i i Nc
− −

= =Δ ∈∫ ∫ β
α… … … …  

 

with 1, ,k k
nk nk

i i k d
n n

α β
−

= = 1, , .= …  
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d…
Lemma: 
Let U  be independent standard uniformly distributed random variables and let 1, ,U

df  and dF  denote the density and cumulative distribution function of  

resp., for  Then 
1

: ,
d

d i
i

S U
=

=∑
.`d ∈

 

[ ]

( )

1
0,

0

0

1( ) ( 1) ( ) sgn( )
2( 1)!

1( ) ( 1) ( ) ( ) sgn( )
2 !

d
k d

d d
k

d
k d d

d
k

d
f x x k x k

kd

d
F x k x k x k

kd

−

=

=

⎛ ⎞⎟⎜= − ⎟ − −⎜ ⎟⎜ ⎟⎜− ⎝ ⎠
⎛ ⎞⎟⎜= − ⎟ − + − −⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑

∑

1

[ ] ( ]0, ,

( )

( ) ( )d d

x

x x∞+1 1

.\

    

 
for  x∈

 
 
This follows e.g. from USPENSKY (1937), Example 3, p. 277, who attributes this result 
already to Laplace. 



 
2. Copulas 
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d

Theorem: 
(Let )1, ,X X

,
(

)
,

(
, )

: .
i i

d
d ni i

nn
N

c
∈

= ∑ …
…

df n� i ( ; )dF n� i

i

S
=

=∑

1

1

d

j
j

d

j
j

"  be a random vector whose joint cumulative distribution function is 

given by a grid-type copula with density 1  Then the 

density and cumulative distribution function )  and ,  resp., for the sum 

iX  is given by 

,11 , , ( )
d di i Ia n…

1

( ;

1

:
d

d

 

1

1

1

1

, ,
( , , )

, ,
( , , )

( ; ) ( )

( ; ) ( )

d
d

d n

d
d

d n

d i i d
i i N

d i i d
i i N

f n x n a n f nx i

F n x a n F nx i

=∈

=∈

⎛ ⎞⎟⎜ ⎟= ⋅ ⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞⎟⎜ ⎟= ⋅ +⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑ ∑

∑ ∑

"
"

"
"

�

�
,x ∈\

d

d

d

+ −

−

   for  

 
 

f  and cumulative distribution functions with density dF  from the Lemma above. 



 

Seite 22 von 43 

 
 
 
 
 
 
 
 
 
 

 
 

 

3. Dependent uncorrelated risks and 

their impact to risk measures 



 
3. Dependent uncorrelated risks and their impact to risk measures 

 
 

Example: 
Consider a grid-type copula with 9 subsquares, i.e.  and  Let the weights 2d = 3.n =

( )a n  for the copula density be given in matrix form as ij
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( ) ( )3 3 1 4 2 2
1/ 3 2 / 3 4 2

ij

a b
A a c a b c

⎡ 1/ 3
2 / 3 4 2
2 / 3 3

a b
a b

a c a b c a b c
c
⎤− −

⎢ ⎥
⎡ ⎤ ⎢ ⎥= = − − − − + +⎢ ⎥⎣ ⎦ +⎢ ⎥

⎢ ⎥− − − + + + − − − ⎦

, 

⎣
 

[with suitable real numbers ]0,1/ 3a b c∈

1,
, , .  It follows that the covariance of the 

corresponding random variables 2X X  is given by 
 

( ) ( ) ( ) ( )( )( )2
3 3

1 2 1 2
1 1

1 3 2
9 ij

i j

E X X E X E X a i j
= =

− = − −∑∑ 0,=    

 

i.e. the risks 1X  and 2X  are uncorrelated but dependent. 
 



 
3. Dependent uncorrelated risks and their impact to risk measures 
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2 1 2:S X= +The density and cumulative distribution function of the aggregated risk X  
are thus, by the above Theorem, given by 
 

{ } { }

{ } { }

{ } { }

{ } { }

{ } { }

2

9 ,

3(2 ) 9( ) ,

9(4 3 ) 10 3(5 18 12 )

(3; ; ) 32 9(16 7 ) 9(14 6 3

28 3(52 19 ) 3(6 33 12

6(2 9 3 ) 3( 2 9 3 )

0,

ax

a b c a b c x

a b c a b c

f x a b c a b c

a b c a b

a b c a b c x

γ

− + + − + +

+ + − + − − +

=
− + + + + + −

− + + + + − − +

− − + + − + + +

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10
3

1 2
3 3
2, 1
3

4) , 1
3

4 5) ,
3 3
5, 2
3
oth

x

x

x x

x x

c x x

x

≤ ≤

≤ ≤

≤ ≤

≤ ≤

≤ ≤

≤ ≤

erwise;

 



 
3. Dependent uncorrelated risks and their impact to risk measures 

 

{ } { } { }

{ } { }

{ }

{ } { }

{ }

2

2

2

2

2

0,
9 1, 0
2 3

9 1( ) 3(2 ) ( 2
2 2
5 (3 18 12 ) ( 10 36 27 )
2

1 (20 66
6

9 ( 3 14 6 ) (32 144 63 )
(3; ; ) 2

1 ( 106 237
6

9 (2 22
2

a x x

a b c x a b c x a b

a b c x a b c x

a b

a b c x a b c x
F x

a b

γ

− + + + − + + − + +

− − + + − + + + +

+ −

− + + + + − − + +
=

+ − + +

−

�

{ } { }

0

1 2),
3 3

2 1
357 ),

41
3213 ),

x

c x

x
c

x
c

≤

≤ ≤

≤ ≤

≤ ≤
− +

≤ ≤
+

{ }

{ } { }

{ }

2

2

4 ) ( 28 156 57 )

1 (134 726 267 ),
6

3 ( 6 9 3 ) 3(4 6 18 )
2 2

( 11 54
1,

a b c x a b c x

a b c

a b c x a b c x

a b

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪ − + + − + − + +⎪⎪⎪⎪⎪⎪ + − − +⎪⎪⎪⎪⎪⎪ − + + + + − − + +⎪⎪⎪⎪⎪ + − +⎪⎪⎪⎪⎪⎩

4 5
3 3

5
318 ),

2.

x

x
c

x

≤ ≤

≤ ≤
+ +
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3. Dependent uncorrelated risks and their impact to risk measures 
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2 (3; ; )f γ� i
(3; ; )γ i ,S X X= +

The following graphs show three different densities  and cumulative 
distribution functions �  for the sum 2  for various choices of 

( , , ).a b c  
2F 2 1

γ =

 

( )1 1 1
, ,

9 9 9
γ =

( )2
, 0, 0

9
γ =

 

Plots of  for various choices of γ 2 (3; ; )f γ� i

( )0, ,
2 2

9 9
γ =



 
3. Dependent uncorrelated risks and their impact to risk measures 

 
 

 

Seite 27 von 43 

 
 

( )1 1 1
, ,

9 9 9
γ =

Plots of  for various choices of γ2 (3; ; )F γ� i

( )2
, 0, 0

9
γ =

( )0, ,
2 2

γ =
9 9



 
3. Dependent uncorrelated risks and their impact to risk measures 

 
 

 

ES [1]

VaR [1]

VaR [2]

VaR [3]

ES [2]

ES [3]

 
Value at Risk and Expected Shortfall for positive dependence [1],  

independence [2], and negative dependence [3] 
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3. Dependent uncorrelated risks and their impact to risk measures 

 
 
For the example we get for the three cases following values for the risk measures 
 

 positive 
dependent independent negative 

dependent 
square root 

formula 
VaR0.1 1.6838 1.5528 1.4430 1.5657 
ES0.1 1.7892 1.7019 1.5269 1.6364 
VaR0.01 1.9000 1.8586 1.5960 1.6930 
ES0.01 1.9333 1.9057 1.6225 1.7000 
VaR0.005 1.9293 1.9000 1.6167 1.7000 
ES0.005 1.9411 1.9167 1.6260 1.7036 

 
Value at Risk (VaR) and Expected Shortfall (ES) 

0.1,  0.01,  andα α= = 0.005α=with   
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4. Dependent risks and their impact 

to risk measures 



 
4. Dependent risks and their impact to risk measures 

 
 
Example (risk distribution with heavy tail): 
 
Suppose that the risks X  and  follow a Pareto distribution with density Y

 
( ) ( ) ( )1 λ− +1 , 0f x x xλ= + ≥  ( )0λ>

= +

 
 

each. 
 
Then the density g and cumulative distribution function G of the aggregated risk 

Y  can be explicitly calculated: 2 :S X
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4. Dependent risks and their impact to risk measures 
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21/λ= : 
 and  are comonotonic: Case 1: X Y

 

( )
( ) ( )2 3

1

4 1 / 2 2 1
Sg

z
z z= ≈

+
3

1 , 0;
z

≥
+

 

 
X  and  are independent: Case 2: Y

 

( )
( ) ( )2 22 31

1 , 0;S
z z

g z z
z+

≈
+

= ≥
+1

z  

 
X  and  are countermonotonic: Case 3: Y

 

( )
( ) ( )2 3

4 2 3

6 4 3 3 2
S

z z

z z z
z

z
g z+ − +

+ − + +
≈

⋅
= ≥

+
3

1 , 6.
1 z+

 

 



 
4. Dependent risks and their impact to risk measures 

 
 

 

Case 3: count
(worst case)

ermonotonicity

omonotonicity
e)

Case 1: c
(best cas

Case 2: independence

α  
 

Value at Risk with  for the three cases 1/ 2λ=
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4. Dependent risks and their impact to risk measures 
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2S X= + 0 1α< <Calculation of the Value at Risk for Y  and : :
 

X  and  are comonotonic: Case 1: Y
 

( )2 2 2;2S
α

= −VaRα  
 

 
X  and  are independent: Case 2: Y

 

( ) 22 2

4 22
1 1

VaR S ∼α α α
−

+ −
= − − 2

4 4 ( 0)α
α

→ ;  

 

 
X  and  are countermonotonic: Case 3: Y

 

( )
( )2 22

4 42
2

VaR S ∼α α α
= − +

− 2

4 2 ( 0).α
α

+ →  
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4. Dependent risks and their impact to risk measures 
 

 
Consequence: 
 
1. The risk measure for a portfolio consisting of two independent or comonotonic 

risks from the same type is greater than the sum of the risk measures for two 
portfolios with one risk for every portfolio! 

 
→ No diversification effect! 

 

 
2. The risk measure for a portfolio of two independent risks of the same type is 

asymptotic equivalent (with large return period) to the risk measure for a portfolio 
of two countermonotonic risks from the same type! 
 

→ Independence is near to the „worst case“! 
 

 



 
4. Dependent risks and their impact to risk measures 
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α  
 
=Value at Risk with  for the three cases 2λ

onotonicity
all )α

monotonicity
 for small )α

Case 3: counterm
(best case for sm

Case 1: co
(worst case

Case 2: Independence



 
4. Dependent risks and their impact to risk measures 
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2S X= + 0 1α< <Calculation of the Value at Risk for Y  and : :
 

X  and  are comonotonic: Case 1: Y
 

( )2
2 2;
α

= −VaR Sα  
 
 

X  and  are countermonotonic: Case 3: Y
 

( )
( )2

2

1 1 12 2
2

VaR S ∼α

α

αα

+ − −
−= →

−
2 2 ( 0)α
α
− . 
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6. Implications for DFA and Solvency II 
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Scatterplot pertaining to an empirical copula for windstorm vs. flooding, 

from real data 
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The data can be well fitted to a 4 grid-type copula represented by the following 
weight matrix: 
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The following graph shows the empirical quantile function for the aggregate risk from 
a Monte Carlo study with 100 000 simulations using this copula. We assume for 
simplicity and purposes of comparison that the marginal distributions of windstorm 
and flooding are of the same Pareto type as above, with 2.λ=  
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Thank you for your attention! 
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