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1 Introduction

The goal of this paper is to examine the PDE approach to the valuation and hedging of defaultable
claims in a Markovian model of credit risk. Our approach is largely based on the previous work by
Bielecki et al. [3] (for related results, see also [4, 5]). In contrast to [3], however, we consider here a
much more general situation, in the sense that the number of primary traded assets, the dimension
of the driving Brownian motion, as well as the number of default times are a priori taken to be
arbitrary integers. The main results of this note, Propositions 4.1 and 4.3, cover the corresponding
results established in [3] (see Propositions 3.1 and 3.2 therein) as special cases.

The paper is organized as follows. For the reader’s convenience, we give in Section 2 an overview
of relevant definitions of stochastic default intensities. In particular, in Definition 2.8 we deal with
the so-called pre-default intensities. In Section 3, we introduce a Markovian security market model
and we study its arbitrage-free property in terms of the existence of a martingale measure for relative
prices.
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Section 4 is devoted to the main issue – the valuation and hedging of first-to-default credit
derivatives through the PDE approach. The work concludes with few examples in which we find
an explicit representation for the unique martingale measure for a market model and we derive
closed-form expressions for replicating strategies of a first-to-default claim.

2 Default Times and Stochastic Intensities

In this introductory section, we provide an overview of the basic properties of default times and the
associated stochastic intensities. For more details and proofs, we refer to Bielecki and Rutkowski [2]
(see also [1, 6]).

Let the random times τ1, . . . , τm, defined on a common probability space (Ω,G,P) where P is
the real-world probability, represent the default times of m reference credit names. We denote by
τ(1) = τ1 ∧ . . . ∧ τm = min (τ1, . . . , τm) the moment of the first default, so that, for any t ∈ R+, no
defaults are observed on the event {τ(1) > t}.

Let
F (t1, . . . , tn) = P{τ1 ≤ t1, . . . , τm ≤ tm}

be the joint probability distribution function of default times. We assume that the probability
distribution of default times admits the joint probability density function f(t1, . . . , tm). Also, let

G(t1, . . . , tm) = P{τ1 > t1, . . . , τm > tm}

stand for the joint probability that the names 1, . . . , m have survived up to times t1, . . . , tm respec-
tively. In particular, the joint survival function equals

P(τ(1) > t) = G(1)(t) = G(t, . . . , t) = P{τ1 > t, . . . , τm > t}.

Obviously, G(1)(t) is the probability that no default have occurred prior to time t.

Definition 2.1 For any l = 1, . . . ,m, we define the default indicator process H l
t = 1{τl≤t} of

the lth credit name and we denote by Hl the filtration generated by this process, that is, we set
Hl = (Hl

t)t∈R+ where Hl
t = σ(H l

u : u ≤ t).

In words, the σ-field Hl
t represents all of the information gained from observing the default

process of the lth credit name up to time t.

We denote by H the joint filtration generated by default indicator processes H1, . . . , Hm, so that
H = H1 ∨ . . . ∨ Hm. Put equivalently, the σ-field Ht equals Ht = H1

t ∨ . . . ∨ Hm
t = σ(H1

t , . . . ,Hm
t )

for any t ∈ R+.

Also, we write H
(1)
t = 1{τ(1)≤t} and H(1) = (H(1)

t )t∈R+ where H(1)
t = σ(H(1)

u : u ≤ t). It is clear
that H(1) is a sub-filtration of H and thus τ(1) is an H-stopping time.

Assumption 2.1 We assume that P{τ(1) > t} = G(1)(t) > 0 for every t ∈ R+. Moreover, we
assume that P{τl = τj} = 0 for any l 6= j, l, j = 1, . . . , m, so that

H
(1)
t = H

(1)
t∧τ(1)

=
m∑

l=1

H l
t∧τ(1)

.

Finally, we introduce a reference filtration F where Ft ⊆ G for every t ∈ R+.

Definition 2.2 The full filtration G is defined by setting G = F∨H1 ∨ . . .∨Hm. Equivalently, the
σ-field Gt = Ft ∨H1

t ∨ . . . ∨Hm
t is the σ-field generated by the union of the σ-field Ft and Ht.
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In words, the σ-field Gt represents all of the information gained up to time t from combining our
observations of defaults of m credit names with those of price fluctuations due to the underlying
noise process (typically, a Brownian motion).

We will sometimes assume, for simplicity of exposition, that F = F0 is the trivial filtration.
In that case, we will have G = H. The next definition introduces some additional notation for
sub-filtrations of G.

Definition 2.3 Let Ĝl stand the filtration generated by the filtrations F and Hl, so that Ĝl = F∨Hl.
We denote by Gl the filtration given by

Gl = F ∨H1 ∨ . . . ∨Hl−1 ∨Hl+1 ∨ . . . ∨Hm.

Hence the full filtration G satisfies G = Gl ∨Hl = Gl ∨ Ĝl.

2.1 Marginal Default Intensities

In the first step, we introduce default intensities associated with the marginal distributions of default
times and the reference filtration F.

Definition 2.4 We set F̂ l
t = P{τl ≤ t | Ft} and we define the F-survival process Ĝl for the lth credit

name by the formula
Ĝl

t = 1− F̂ l
t = P{τl > t | Ft}, ∀ t ∈ R+.

Assume that Ĝl
t > 0, t ∈ R+, for every l = 1, . . . , m. Then the F-hazard process Γ̂l of τl is defined

through the equality
1− F̂ l

t = e−bΓ
l
t = − ln Ĝl

t, ∀ t ∈ R+.

Assumption 2.2 We assume that Ĝl
t > 0, t ∈ R+, and that the process F̂ l is absolutely continuous

with respect to the Lebesgue measure, i.e., F̂ l
t =

∫ t

0
f̂ l

u du for some F-predictable, non-negative
process f̂ l, for every l = 1, . . . , m.

The last assumption implies that Γ̂l is also absolutely continuous with respect to the Lebesgue
measure, for every l = 1, . . . , m. Specifically, we can express Γ̂l

t as Γ̂l
t =

∫ t

0
γ̂l

u du for the F-predictable,
non-negative process γ̂l given as

γ̂l
t =

f̂ l
t

1− F̂ l
t

=
f̂ l

t

Ĝl
t

.

Definition 2.5 The process γ̂l is called the F-intensity of default time τl or, less formally, the
marginal default intensity of the lth credit name.

The intuitive interpretation of the marginal intensity γ̂l can be seen from the following conver-
gence, which can be established under mild technical assumptions,

γ̂l
t = lim

∆t→0

1
∆t
P{t < τl < t + ∆t | τl > t,Ft}

= lim
∆t→0

1
∆t

P{t < τl < t + ∆t | Ft}
P{τl > t | Ft} =

f̂ l
t

1− F̂ l
t

.

The following auxiliary result is well known (see, e.g., Proposition 5.1.3 in Bielecki and Rutkowski
[2]).

Lemma 2.1 Under Assumption 2.2, the process M̂ l defined by the formula M̂ l
t = H l

t−Γ̂l
τl∧t, t ∈ R+,

is a Ĝl-martingale.
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Let us write ξ̂l
t = γ̂l

t1{τl>t}. Then we also have that

M̂ l
t = H l

t −
∫ τl∧t

0

γ̂l
u du = H l

t −
∫ t

0

ξ̂l
u du. (1)

The process M̂ l is the compensated martingale process arising in the Doob-Meyer decomposition
with respect to Ĝl of the default process H l (note that H l is a bounded Ĝl-submartingale).

2.2 Joint Default Intensities

We now introduce that joint default intensity for the lth credit name, that is, the intensity process as-
sociated with the reference filtration F and default indicator processes H1, . . . , H l−1,H l+1, . . . , Hm.

Definition 2.6 Let us set F l
t = P{τl ≤ t | Gl

t} and let us define the Gl-survival process by the
formula

Gl
t = 1− F l

t = P{τl > t | Gl
t}, ∀ t ∈ R+.

Assume that Gl
t > 0, t ∈ R+, for every l = 1, . . . , m. Then the Gl-hazard process Γl associated with

τl is defined through the equality

1− F l
t = e−Γlt = − ln Gl

t, ∀ t ∈ R+.

Assumption 2.3 We assume that Gl
t > 0, t ∈ R+, and the process F l is absolutely continuous

with respect to the Lebesgue measure, that is, F l
t =

∫ t

0
f l

u du for some Gl-predictable process f l, for
every l = 1, . . . , m.

Under Assumption 2.3, the process Γl is absolutely continuous, for every l = 1, . . . , m, and we
can express Γl

t as Γl
t =

∫ t

0
γl

u du for the Gl-predictable, non-negative process γl given as

γl
t =

f l
t

1− F l
t

=
f l

t

Gl
t

.

Definition 2.7 The process γl is called the Gl-intensity of default time τl or, less formally, the joint
default intensity of the lth credit name.

The interpretation of the joint default intensity γl of the lth credit name can be seen from the
following a.e. convergence

γl
t = lim

∆t→0

1
∆t
P{t < τl < t + ∆t | τl > t,Gl

t}

= lim
∆t→0

1
∆t

P{t < τl < t + ∆t | Gl
t}

P{τl > t | Gl
t}

=
f l

t

1− F l
t

.

The next lemma is a counterpart of Lemma 2.1 and thus it also follows from Proposition 5.1.3
in Bielecki and Rutkowski [2].

Lemma 2.2 Under Assumption 2.3, the process M l defined by the formula M l
t = H l

t−Γl
τl∧t, t ∈ R+,

is a G-martingale.

Let us write ξl
t = γl

t1{τl>t}. Then we also have that

M l
t = H l

t −
∫ τl∧t

0

γl
u du = H l

t −
∫ t

0

ξl
u du. (2)

The process M l is the compensated martingale process from the Doob-Meyer decomposition of the
default process H l, which is now considered as a bounded G-submartingale.
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2.3 Pre-Default Intensities

Since we will be mainly interested in the valuation and hedging of the so-called first-to-default claims,
we find it useful to introduce also the concept of pre-default intensities. Recall that τl represents the
default time of the lth asset, whereas by τ(l) we denote the moment of the lth default in our model,
in particular, τ(1) = min(τ1, . . . , τm) is the moment of the first default.

We assume that P{τ(1) > t | Ft} > 0 for every t ∈ R+. The following definition was introduced
in Bielecki et al. [3].

Definition 2.8 The pre-default intensity λ is defined by

λt = lim
∆t→0

1
∆t
P{t < τ(1) ≤ t + ∆t | τ(1) > t,Ft} = lim

∆t→0

1
∆t

P{t < τ(1) < t + ∆t | Ft}
P{τ(1) > t | Ft} .

The pre-default intensity λl of the lth credit name is defined by the formula

λl
t = lim

∆t→0

1
∆t
P{t < τl ≤ t + ∆t | τ(1) > t,Ft} = lim

∆t→0

1
∆t

P{t < τl < t + ∆t | Ft}
P{τ(1) > t | Ft} .

Remark 2.1 Assume that the reference filtration F is trivial. Then the pre-default intensities λl(t)
are deterministic functions that are, in general, different from the marginal intensities γ̂l(t). It is
also important to note that the equality λl

t = γl
t holds on the event {τ(1) > t}, that is, prior to

occurrence of the first default.

3 Security Market Model

In this section, we introduce a market model and we study its arbitrage-free features by examining
the existence and uniqueness of a martingale measure associated with the choice of a particular
primary traded asset, with strictly positive price process, as a numeraire (for the general theory, see,
e.g., Musiela and Rutkowski [8]).

3.1 Prices of Primary Assets

We shall first specify the dynamics of primary traded assets in our market model. Let n stand
for the number of primary traded assets, d for the dimension of the underlying Brownian motion
W = (W 1, . . . , W d) under the real-world probability P, and m for the number of default times
τ1, . . . , τm. Note that W is assumed to be a Brownian motion with respect to the filtration G. In
fact, it suffices to assume that W is a Brownian motion with respect to F and then deduce from
Assumption 2.3 that it is also a Brownian motion with respect to G. It is also worth stressing that
we do not postulate that the equality m = n holds.

Assumption 3.1 We assume that under real-world probability P the price processes Y 1, . . . , Y n of
primary traded assets are governed by the following expression

dY i
t = Y i

t−
(
µ̃i(t) dt +

d∑

k=1

σk
i (t) dW k

t +
m∑

l=1

κl
i(t) dH l

t

)
(3)

where

µ̃i(t) = µi(t)−
m∑

l=1

κl
i(t)ξ

l
t
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and µi, σk
i and some κl

i ≥ −1 are G-predictable processes. Equivalently

dY i
t = Y i

t−
(
µi(t) dt +

d∑

k=1

σk
i (t) dW k

t +
m∑

l=1

κl
i(t) dM l

t

)

where the G-martingales M l, l = 1, . . . ,m are given by (cf. (2))

M l
t = H l

t −
∫ τl∧t

0

γl
u du = H l

t −
∫ t

0

ξl
u du.

Remark 3.1 Let us recall that we do not allow for the possibility of simultaneous defaults, i.e.,
P{τl = τj} = 0 for l 6= j. This implies that

∆H l
t∆Hj

t =
{

∆H l
t if l = j,

0 if l 6= j.

Consequently, the quadratic covariation between any two martingales introduced in Lemma 2.2 is
zero for l 6= j, that is,

[M l,M j ]t =
∑

0<u≤t

∆H l
u∆Hj

u = 0, ∀ t ∈ R+.

We also have that [W k,M l] = 0 for every k = 1, . . . , d and l = 1, . . . , m, and thus the driving
martingales W 1, . . . , W d,M1, . . . , Mm pairwise orthogonal.

We denote by σi(t) = (σ1
i (t), . . . , σd

i (t)) the volatility vector of the ith asset. Also, we write
κi(t) = (κ1

i (t), . . . , κ
m
i (t)). The parameters κl

i(t) represent recovery processes in the sense that the
jump ∆Y i

t = Y i
t − Y i

t− at time t in the price process of the ith asset depends on κl
i(t) through the

formula

∆Y i
t =

m∑

l=1

κl
i(t)Y

i
t−∆H l

t

or equivalently

Y i
t =

m∑

l=1

(1 + κl
i(t))Y

i
t−∆H l

t . (4)

In particular, if κl
i(t) = 0 for l = 1, . . . , m then the ith asset is indifferent with respect to the default

risk of all reference credit names. If, on the contrary, we have that κl
i(t) = −1 for every l = 1, . . . ,m

then the value of the ith asset necessarily falls to zero at the moment τ(1) of the first default. Finally,
if κi

i(t) = −1 then the ith asset is subject to zero recovery at time τi, in the sense that its price falls
to zero at τi.

3.1.1 Markovian Set-up

For our purposes, it is essential that the considered market model has a Markovian structure. To
ensure this property, we make the following standing assumption regarding the model coefficients
and pre-default intensities.

Assumption 3.2 The processes µi, σi, κi in the SDE (3.1) are given by some functions on R+×Rn,
specifically, µi(t) = µi(t, Y 1

t−, . . . , Y n
t−), σi(t) = σi(t, Y 1

t−, . . . , Y n
t−) and κi(t) = κi(t, Y 1

t−, . . . , Y n
t−).

Moreover, these functions are sufficiently regular, so that the SDE (3.1) admits a unique strong
solution for i = 1, . . . , n. In addition, we assume that the pre-default intensities λl are deterministic
functions of the asset prices, that is, λl

t = λl(t, Y 1
t−, . . . , Y n

t−) for every t ∈ R+ and l = 1, . . . , m.

Let us observe that the asset prices (Y 1, . . . , Y n) are not necessarily Markovian under Assumption
3.2. We have, however, the following result.
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Lemma 3.1 Under Assumption 3.2, the asset prices (Y 1, . . . , Y n) are jointly Markov prior to the
moment of the first default.

Proof. Note that on the random interval [0, τ(1)) (i.e., prior to the first default) the SDE (3) reduces
to

dY i
t = Y i

t

(
µ̃i(t) dt +

d∑

k=1

σk
i (t) dW k

t

)
(5)

where

µ̃i(t) = µi(t)−
m∑

l=1

κl
i(t)γ

l
t = µi(t)−

m∑

l=1

κl
i(t)λ

l
t.

Hence, under Assumption 3.2, the process (Y 1, . . . , Y n) is clearly a Markov process prior to the first
default. ¤

3.1.2 Special Case

In the special case where the coefficients µi, σi, κi and λl are deterministic functions of time only,
the unique solution to (3) can be found explicitly.

Proposition 3.1 The unique solution Y i to the SDE (3) is given by the formula

Y i
t = Y i

0 exp
( ∫ t

0

(
µ̃i(u)− 1

2

d∑

k=1

(σk
i (u))2

)
du +

d∑

k=1

∫ t

0

σk
i (u) dW k

u

)

×
∏

0<u≤t

(
1 +

m∑

l=1

κl
i(u)∆H l

u

)
.

Proof. This is a well-known result from the theory of SDEs. In particular, we make use of the fact
that P{τi = τj} = 0. ¤

Note that we have, on the interval [0, τ(1)),

Y i
t = Y i

0 exp
( ∫ t

0

(
µi(u)−

m∑

l=1

κl
i(u)λl

u −
1
2

d∑

k=1

(σk
i (u))2

)
du

)
(6)

× exp
( d∑

k=1

∫ t

0

σk
i (u) dW k

u

)
.

3.2 Arbitrage-free Property of the Market Model

We take asset Y 1 as the numeraire and we search for a probability measure Q such that all asset
prices expressed in units of the numeraire follow Q-martingales. In order to alleviate notation, we
shall omit the variables in coefficients, so that we shall write µi rather than µi(t, Y 1

t−, . . . , Y n
t−), etc.

3.2.1 Dynamics of Relative Prices

We assume that Y 1
0 > 0 and κl

1 > −1 for l = 1, . . . ,m so that the inequality Y 1
t > 0 is valid for

every t ∈ R+.

Lemma 3.2 The dynamics of the process (Y 1)−1 under P are

d
( 1

Y 1
t

)
=

1
Y 1

t−

{(
− µ1 +

d∑

k=1

(σk
1 )2 +

m∑

l=1

ξl
t(κ

l
1)

2

1 + κl
1

)
dt−

d∑

k=1

σk
1 dW k

t −
m∑

l=1

κl
1

1 + κl
1

dM l
t

}
.



M. Rutkowski and K. Yousiph 9

Proof. The Itô formula yields

d
( 1

Y 1
t

)
=

1
Y 1

t−

{
− µ1 dt−

d∑

k=1

σk
1dW k

t −
m∑

l=1

κl
1ξ

l
t dt +

d∑

k=1

(σk
1 )2 dt +

∑

0<u≤t

∆
( 1

Y 1
u

)}
.

It follow easily from (4) that

∆
(

1
Y 1

t

)
=

1
Y 1

t

− 1
Y 1

t−
=

m∑

l=1

−κl
1

1 + κl
1

1
Y 1

t−
∆H l

t .

To conclude the proof, it suffices to make use of (4). ¤

Let us define the relative price of the ith asset by setting

Y i,1
t = Y i

t (Y 1
t )−1, ∀ i = 1, . . . , n.

Lemma 3.3 The dynamics of the relative price Y i,1 under P are

dY i,1
t = Y i,1

t−
{(

µi − µ1 −
d∑

k=1

σk
1 (σk

i − σk
1 )−

m∑

l=1

ξl
tκ

l
1

κl
i − κl

1

1 + κl
1

)
dt

+
d∑

k=1

(σk
i − σk

1 ) dW k
t −

m∑

l=1

κl
i − κl

1

1 + κl
1

dM l
t

}
.

Proof. The Itô integration by parts formula

d(XtZt) = Xt− dZt + Zt− dXt + d[X, Z]t

yields

d

(
Y i

t−
1

Y 1
t

)
= Y i

t− d
( 1

Y 1
t

)
+

1
Y 1

t−
dY i

t + d
[
Y i,

1
Y 1

]
t
.

Using Lemma 3.2, we thus obtain

dY i,1
t = Y i,1

t−
{(

− µ1 +
d∑

k=1

(σk
1 )2

)
dt−

d∑

k=1

σk
1 dW k

t −
m∑

l=1

κl
1

1 + κl
1

dH l
t

}

+ Y i,1
t−

(
µi dt +

d∑

k=1

σk
i dW k

t +
m∑

l=1

κl
i dM l

t +
d∑

k=1

σk
i (−σk

1 ) dt
)

+ d
∑

u≤t

∆Y i
u∆

1
Y 1

u

.

Observe that

∆Y i
t ∆

1
Y 1

t

= Y i
t−

1
Y 1

t−

m∑

l=1

κl
i∆H l

t

−κl
1

1 + κl
1

∆H l
t = −Y i,1

t−

m∑

l=1

κl
iκ

l
1

1 + κl
1

∆H l
t

and thus

dY i,1
t = Y i,1

t−
(
− µ1 +

d∑

k=1

σk
1 (σk

1 − σk
i ) +

m∑

l=1

ξl
t

1 + κl
1

)
dt

− Y i,1
t−

( d∑

k=1

σk
1 dW k

t −
m∑

l=1

κl
1

1 + κl
1

dM l
t

)

+ Y i,1
t−

(
µi dt +

d∑

k=1

σk
i dW k

t +
m∑

l=1

κl
i dM l

t

)
− Y i,1

t−

m∑

l=1

κl
iκ

l
1

1 + κl
1

dH l
t .
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Substituting for dH l
t (cf. (2)), we obtain

dY i,1
t = Y i,1

t−
[
− µ1 +

d∑

k=1

σk
1 (σk

1 − σk
i ) +

m∑

l=1

ξl
t

( 1
1 + κl

1

− 1 + κl
1

)]
dt

+ Y i,1
t−

[
−

m∑

l=1

κl
1

1 + κl
1

dM l
t + µi dt +

d∑

k=1

σk
i dW k

t +
m∑

l=1

κl
i dM l

t

]

− Y i,1
t−

[ m∑

l=1

κl
iκ

l
1

1 + κl
1

(dM l
t + ξl

tdt)
]
− Y i,1

t−

d∑

k=1

σk
1 dW k

t ,

and finally

dY i,1
t = Y i,1

t−
{(

µi − µ1 −
d∑

k=1

σk
1 (σk

i − σk
1 )−

m∑

l=1

ξl
tκ

l
1

κl
i − κl

1

1 + κl
1

)
dt

+
d∑

k=1

(σk
i − σk

1 ) dW k
t −

m∑

l=1

κl
1

κl
i − κl

1

1 + κl
1

dM l
t

}
,

which is the desired result. ¤

3.2.2 Martingale Measure for Relative Prices

We fix a horizon date T > 0 and we introduce the following definition.

Definition 3.1 A probability measure Q is called an (equivalent) martingale measure associated
with the numeraire Y 1 if Q is equivalent to the real-world probability P on (Ω,GT ) and the relative
price Y i,1

t , t ∈ [0, T ], is a G-martingale under Q for any i = 1, . . . , n.

In order to examine the existence and uniqueness of a martingale measure associated with the
numeraire Y 1, we shall use the following version of Girsanov’s theorem, due to Kusuoka [7], in which
we denote by E(M) the Doléans (or stochastic) exponential of a martingale M (see, for instance,
Protter [9]). Let us stress that this result is valid under our standing Assumption 2.3.

Proposition 3.2 Any probability measure P̃ equivalent to P on (Ω,GT ) is given by the Radon-
Nikodým derivative process η satisfying, for t ∈ [0, T ],

dP̃
dP

∣∣∣Gt = ηt =
d∏

k=1

Et

(∫ .

0

θk
u dW k

u

) m∏

l=1

Et

( ∫ .

0

ζl
u dM l

u

)
(7)

where

dηt = ηt−
( d∑

k=1

θk
t dW k

t +
m∑

l=1

ζl
t dM l

t

)
, η0 = 1,

and θ1, θ2, . . . , θd, ζ1, ζ2, . . . , ζm are some G-predictable processes such that ζl
t > −1 for every t ∈

[0, T ]. Moreover, the processes W̃ k, k = 1, . . . , d and M̃ l, l = 1, . . . , m given as, for t ∈ [0, T ],

W̃ k
t = W k

t −
∫ t

0

θk
u du,

M̃ l
t = M l

t −
∫ t

0

ξl
uζl

u du = H l
t −

∫ t

0

ξl
u(1 + ζl

u) du = H l
t −

∫ t

0

ξ̃l
u du,

are G-martingales under P̃.
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Of course, the processes θ = (θ1, θ2, . . . , θd) and ζ = (ζ1, ζ2, . . . , ζm) need to satisfy suitable
integrability conditions that ensure that the right-hand side in (7) is well defined and the equality
EQ(ηT ) = 1 holds. Note also that since the martingale M l is stopped at time τl, we may and do
assume in what follows that the process ζl is also stopped at τl for any l = 1, . . . , m.

The next result provides a necessary and sufficient condition for the martingale property of
relative prices Y i,1 under some equivalent probability measure P̃. Of course, Y 1,1

t = 1 for t ∈ [0, T ]
and thus it is obviously a martingale under any probability measure equivalent to P.

Proposition 3.3 A probability measure P̃ equivalent to P on (Ω,GT ) is a martingale measure asso-
ciated with the numeraire Y 1 if and only if the processes θ and ζ satisfy the following equation, for
i = 2, 3, . . . , n,

Y i,1
t−

(
µ1 − µi +

d∑

k=1

(σk
1 − σk

i )(θk
t − σk

1 ) +
m∑

l=1

ξl
t(κ

l
1 − κl

i)
ζl
t − κl

1

1 + κl
1

)
= 0. (8)

Proof. It suffices to apply Proposition 3.2 to dynamics of the relative price derived in Lemma 3.3
and to use the fact that Q is a martingale measure associated with the numeraire Y 1 if and only if
the drift term in the dynamics of Y i,1 vanishes. ¤

Corollary 3.1 Assume that a martingale measure Q exists. Then the dynamics of the relative price
Y i,1 under Q are, for any i = 1, . . . , n

dY i,1
t = Y i,1

t−
( d∑

k=1

(σk
i − σk

1 ) dW̃ k
t −

m∑

l=1

κl
i − κl

1

1 + κl
1

dM̃ l
t

)
.

Proof. The result follow by combining Lemma 3.3 with Proposition 3.3. ¤

3.2.3 Existence and Uniqueness of a Martingale Measure

Let us assume temporarily that Y i,1
t 6= 0 for t ∈ [0, T ]. Then (8) reduces to, for i = 2, 3, . . . , n,

µ1 − µi +
d∑

k=1

(σk
1 − σk

i )(θk
t − σk

1 ) +
m∑

l=1

ξl
t(κ

l
1 − κl

i)
ζl
t − κl

1

1 + κl
1

= 0

or equivalently

d∑

k=1

θk
t (σk

1 − σk
i ) +

m∑

l=1

ζl
tξ

l
t

κl
1 − κl

i

1 + κl
1

= µi − µ1 +
d∑

k=1

σk
1 (σk

1 − σk
i ) +

m∑

l=1

ξl
t(κ

l
1 − κl

i)
κl

1

1 + κl
1

.

Recall that ξl
t = γl

t1{t≤τl} and prior to the first default we have that γl
t = λl

t. We thus have the
following lemma, in which we only assume that prices of primary assets do not vanish prior to the
first default.

Lemma 3.4 Assume that relative prices are non-zero prior to the first default, that is, Y i,1
t 6= 0 for

any t ∈ [0, T ] on the event {τ(1) > t}. Then the processes θ and ζ satisfy, for i = 2, 3, . . . , n,

d∑

k=1

θk
t (σk

1 − σk
i ) +

m∑

l=1

ζl
tλ

l
t

κl
1 − κl

i

1 + κl
1

(9)

= µi − µ1 +
d∑

k=1

σk
1 (σk

1 − σk
i ) +

m∑

l=1

λl
t(κ

l
1 − κl

i)
κl

1

1 + κl
1

for any t ∈ [0, T ] on the event {τ(1) > t}.
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It is clear that the assumption that Y i,1
t 6= 0 for any t ∈ [0, T ] on the event {τ(1) > t} is not

restrictive if asset prices are modelled by (3) and the coefficients µi, σi, κi and the intensities λl are
deterministic functions of the time parameter t only. Indeed, the asset prices are then given by (6)
on the interval [0, τ(1)), and thus they are non-zero prior to the first default if their initial values are
non-zero.

To cover a general case, we need to impose the following standing assumption.

Assumption 3.3 The prices of primary assets Y 1, . . . , Y n do not vanish prior to the first default,
that is, Y i

t 6= 0 for i = 1, . . . , n on the interval [0, τ(1)).

Remark 3.2 In what follows, we shall focus on the valuation and hedging of a first-to-default claim,
so that it will be enough to examine the system of equations (9). Let us observe, however, that
after each default the system of equations (8) collapses by one dimension, as one of default times
drops out. If we had zero recovery for exactly one asset (that is, κl

i = −1 for exactly one i) then
the remaining system between defaults resembles the system above, as one primary asset also drops
out. The default intensities will differ, however, as generally there is a different kind of dependence
between defaults of surviving names after the first default occurs.

Equations (9) are referred to as pre-default no-arbitrage equations. The matrix we can form to
represent this equations has with n−1 rows and d+m columns. Since we wish to establish existence
and uniqueness of a solution (θ, ζ) to the pre-default equations, we make the following assumption.

Assumption 3.4 The number of primary traded assets is equal to the number of driving orthogonal
martingales W 1, . . . ,W d,M1, . . . ,Mm plus one, that is, n = d + m + 1.

We now need to solve the pre-default equations for the unknown processes θ and ζ. The following
result follows directly from Lemma 3.4 and Assumption 3.4.

Lemma 3.5 Equation (9) can be represented by

Atxt = bt

with the Rd+m-valued process xt = (θ, λζ)T with λζ = (λ1ζ1, . . . , λmζm), the Rn−1-valued process
bt given by the right-hand side of (9), and the (n− 1)× (m + d) matrix At given by

At =




σ1
1 − σ1

2 . . . σd
1 − σd

2
κ1
1−κ1

2
1+κ1

1
. . .

κm
1 −κm

2
1+κm

1
...

. . .
...

...
. . .

...
σ1

1 − σ1
n . . . σd

1 − σd
n

κ1
1−κ1

n

1+κ1
1

. . .
κm
1 −κm

n

1+κm
1


 .

The pre-default equations (9) admit a unique solution if and only if the matrix At is non-singular,
that is, |At| 6= 0 for t ∈ [0, T ].

Remark 3.3 Of course, under Assumption 3.4, At is the square matrix. If model coefficients and
default intensities are deterministic functions of time then A,x and b are deterministic functions as
well. Hence in that case a solution (θ, ζ) will be given by a pair of deterministic functions of time.

We are in a position to state the following result on the existence and uniqueness of a martingale
measure for relative prices.

Proposition 3.4 Assume that the pre-default intensities λl
t, l = 1, . . . , m are strictly positive for

every t ∈ [0, T ]. Then the martingale measure Q for the relative prices Y i,1, i = 2, 3, . . . , m stopped
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at τ(1) ∧ T exists and is unique if and only if A−1
t exists. The Radon-Nikodým derivative of Q with

respect to P on (Ω,GT ) is given by

dQ
dP

=
d∏

k=1

ET

( ∫ .

0

θk
u dW k

u

) m∏

l=1

ET

(∫ .

0

ζl
u dM l

u

)
.

Proof. It is enough to observe that there is a unique solution to the system in Lemma 3.5 and,
under the present assumptions, there is one-to-one correspondence between the vectors λζ and ζ.
The Radon-Nikodým derivative is then given by Kusuoka’s result, that is, Proposition 3.2. ¤

In what follows, we will work under the following assumption.

Assumption 3.5 The pre-default intensities λl
t, l = 1, . . . , m are strictly positive for every t ∈ [0, T ]

and the inverse matrix A−1
t exists for every t ∈ [0, T ]. In other words, we postulate that the market

model admits the unique martingale measure Q for relative prices Y i,1, i = 2, 3, . . . ,m stopped at
τ(1) ∧ T .

3.2.4 Trading Strategies

By a trading strategy φ we mean any Rn-valued, G-predictable stochastic process φ = (φ1, . . . , φn).
The wealth process of a trading strategy φ is represented by

Vt(φ) =
n∑

i=1

φi
tY

i
t .

We say that a strategy φ is self-financing if its wealth process satisfies the following condition

dVt(φ) =
n∑

i=1

φi
t dY i

t .

The following auxiliary result is well known.

Lemma 3.6 Assume that the price process Y 1 is strictly positive and define the relative wealth
Ṽ (φ) = V (φ)(Y 1)−1. A strategy φ is self-financing whenever

dṼt(φ) =
n∑

i=2

φi
t dY i,1

t . (10)

Definition 3.2 We denote by Φ the class of all admissible trading strategies, that is, all self-
financing trading strategies such that the relative wealth process Ṽ (φ) is a G-martingale under the
martingale measure Q.

We make the standard assumption that only admissible trading strategies are allowed. Then, in
view of Assumption 3.5, there are no arbitrage opportunities in our market modelM = (Y 1, . . . , Y n,Φ)
provided that all trading activities are stopped at τ(1) ∧ T .

4 PDE Approach

Recall that we work under the standing Assumptions 3.1-3.5. In particular, it is assumed that the
market M = (Y 1, . . . , Y n, Φ) is arbitrage-free, specifically, the martingale measure for relative prices
Y i,1 exists and is unique when we restrict our attention to the random interval [0, τ(1) ∧ T ].
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4.1 First-to-Default Claims

Since trading is not allowed after τ(1), it is natural to focus on first-to-default claims only.

Definition 4.1 A first-to-default claim (FTDC) with maturity T is a defaultable claim (X,Z, τ(1)),
where X is a constant amount payable at maturity if no default occurs and Z = (Z1, . . . , Zl) is an
Rl-valued, G-adapted process, where Zl

τ(1)
specifies the recovery payoff received at time τ(1) if the

lth name is the first defaulted name, that is, on the event {τl = τ(1) ≤ T}.

In order to preserve the Markovian feature of our model, we shall only consider first-to-default
claims satisfying the following additional assumption.

Assumption 4.1 Recovery processes Zl, l = 1, . . . , m are given by some real-valued functions on
[0, T ] × Rn, specifically, Zl

t = Zl(t, Y 1
t , . . . , Y n

t ). Moreover, X = g(Y 1
T , . . . , Y n

T ) for some function
g : Rn → R.

It is worth noting that we have, on the event {τl = τ(1) ≤ T},

Zl(τl, Y
1
τl

, . . . , Y n
τl

) = Zl

(
τl, (1 + κl

1(τl))Y 1
τl−, . . . , (1 + κl

n(τl))Y n
τl−

)
.

The price process of a first-to-default claim will take the form of a G-martingale, stopped at time
τ(1)∧T . Let Y be a European contingent claim settled at time τ(1)∧T . Assuming that Y (Y 1

τ(1)∧T )−1

is Q-integrable, we can represent the risk-neutral value of Y on the random interval [0, τ(1) ∧ T ] as
follows

πt(Y ) = Y 1
t EQ

(
Y (Y 1

τ(1)∧T )−1 | Gt

)
. (11)

In the present Markovian set-up, there exists a pre-default pricing function C : [0, T ] × Rn → R
representing the pre-default risk-neutral value of the claim, as shown in the following lemma in which
we assume suitable integrability of the claim Y associated with (X,Z, τ(1)).

Lemma 4.1 There exists a function C : [0, T ]×Rn → R such that we have, for every t ∈ [0, τ(1)∧T ),

πt(Y ) = C(t, Y 1
t , . . . , Y n

t ) =: Ct.

Proof. It suffices to observe that a first-to-default claim (X, Z, τ(1)) can be represented as a European
claim Y , settled at time τ(1) ∧ T , and given by

Y =
m∑

l=1

1{τl=τ(1)≤T}Zl

(
τl, (1 + κl

1(τl))Y 1
τl−, . . . , (1 + κl

n(τl))Y n
τl−

)
(12)

+ 1{τ(1)>T}g(Y 1
T , . . . , Y n

T ),

and to use the Markov property established in Lemma 3.1. ¤

4.2 Pre-default Pricing PDE

We assume from now on that Ct = C(t, Y 1
t , . . . , Y n

t ) for some regular function C. By regular, we
mean that the partial derivatives ∂iC = ∂yiC and ∂ijC = ∂yi∂yj C are well-defined continuous
functions. We say that an FTDC (X,Z, τ(1)) is admissible if the random variable Y (Y 1

τ(1)∧T )−1 is
Q-integrable, where Y is given by (12) and the associated pre-default pricing function C is regular.
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Proposition 4.1 The pre-default pricing function C(t, y1, . . . , yn) of an admissible FTDC (X, Z, τ(1))
satisfies the following PDE

∂tC +
1
2

n∑

i,j=1

d∑

k=1

σk
i σk

j yiyj∂ijC +
n∑

i=1

(
αi −

m∑

l=1

κl
iλ

l(1 + ζl)
)
yi∂iC

− (α1 + β)C +
m∑

l=1

λl 1 + ζl

1 + κl
1

∆lC = 0

with the terminal condition C(T, y1, . . . , yn) = g(y1, . . . , yn), where

αi = µi +
d∑

k=1

σk
i (θk − σk

1 ), β =
m∑

l=1

λlκl
1

(
1− 1 + ζl

1 + κl
1

)
,

and
∆lC = Zl(t, y1(1 + κl

1), . . . , yn(1 + κl
n))− C(t, y1, . . . , yn).

Proof. Using Itô’s formula, we obtain (the arguments (t, Y 1
t , . . . , Y n

t ) are suppressed)

dCt = ∂tC dt +
n∑

i=1

Y i
t−∂iC

(
µi dt +

d∑

k=1

σk
i dW k

t

)
+

1
2

n∑

i,j=1

d∑

k=1

σk
i σk

j Y i
t−Y j

t−∂ijC dt

+
m∑

l=1

(
∆lCt −

n∑

i=1

κl
iY

i
t−∂iC

)(
dM l

t + λl dt
)

where ∆lCt is defined by the formula

∆lCt = Zl(t, (1 + κl
1)Y

1
t−, . . . , (1 + κl

n)Y n
t−)− C(t, Y 1

t−, . . . , Y n
t−).

We take Y 1 as the numeraire and we shall use the martingale property of the relative price C̃t =
(Y 1

t )−1C(t, Y 1
t , . . . , Y n

t ) under the probability measure Q. Another application of Itô’s formula yields

dC̃t = d
( Ct

Y 1
t

)
= Ct− d

( 1
Y 1

t

)
+

1
Y 1

t−
dCt + d

[
C,

1
Y 1

]
t

where in turn

d
[
C,

1
Y 1

]
t
= − 1

Y 1
t

n∑

i=1

d∑

k=1

σk
1σk

i Y i
t ∂iC dt− 1

Y 1
t−

m∑

l=1

κl
1

1 + κl
1

∆lCt∆H l
t .

In view of Lemma 3.2, we thus have

dC̃t = C̃t−
{(

− µ1 +
d∑

k=1

(σk
1 )2 +

m∑

l=1

λl(κl
1)

2

1 + κl
1

)
dt−

d∑

k=1

σk
1dW k

t −
m∑

l=1

κl
1

1 + κl
1

dM l
t

}

+
1

Y 1
t

{
∂tC +

n∑

i=1

µiY
i
t−∂iC +

1
2

n∑

i,j=1

d∑

k=1

σk
i σk

j Y i
t−Y j

t−∂ijC
}

dt

+
1

Y 1
t

n∑

i=1

d∑

k=1

σk
i Y i

t−∂iC dW k
t +

1
Y 1

t−

m∑

l=1

(
∆lCt −

n∑

i=1

κl
iYi∂iC

)
(dM l

t + λl dt)

− 1
Y 1

t

n∑

i=1

d∑

k=1

σk
1σk

i Y i
t ∂iC dt− 1

Y 1
t−

m∑

l=1

κl
1

1 + κl
1

∆lCt(dM l
t + λl dt).
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Under the martingale measure Q, we obtain

dC̃t = C̃t−
(
− µ1 +

d∑

k=1

(σk
1 )2 +

m∑

l=1

λl(κl
1)

2

1 + κl
1

)
dt− C̃t−

{ d∑

k=1

σk
1dW̃ k

t +
d∑

k=1

σk
1θk dt

+
m∑

l=1

κl
1

1 + κl
1

(
dM̃ l

t + λlζl dt
)}

+
1

Y 1
t

{
∂tC +

n∑

i=1

µiY
i
t−∂iC +

1
2

n∑

i,j=1

d∑

k=1

σk
i σk

j Y i
t−Y j

t−∂ijC
}

dt

+
1

Y 1
t

n∑

i=1

d∑

k=1

σk
i Y i

t−∂iC(dW̃ k
t + θk dt)

+
1

Y 1
t−

m∑

l=1

(
∆lCt −

n∑

i=1

κl
iYi∂iC

)
(dM̃ l

t + λl(1 + ζl) dt)

− 1
Y 1

t

n∑

i=1

d∑

k=1

σk
1σk

i Y i
t−∂iC dt− 1

Y 1
t−

m∑

l=1

κl
1

1 + κl
1

∆lCt

(
dM̃ l

t + λl(1 + ζl) dt
)
.

Consequently

dC̃t = C̃t

(
− µ1 +

d∑

k=1

(σk
1 )2 +

m∑

l=1

λl(κl
1)

2

1 + κl
1

dt−
d∑

k=1

σk
1θk dt−

m∑

l=1

κl
1λ

lζl

1 + κl
1

dt
)

+
1

Y 1
t

(
∂tC +

n∑

i=1

µiY
i
t−∂iC +

1
2

n∑

i,j=1

d∑

k=1

σk
i σk

j Y i
t−Y j

t−∂ijC
)

dt

+
1

Y 1
t

n∑

i=1

d∑

k=1

σk
i Y i

t−∂iCθk dt +
1

Y 1
t

m∑

l=1

(
∆lCt −

n∑

i=1

κl
iYi∂iC

)
λl(1 + ζl) dt

− 1
Y 1

t

n∑

i=1

d∑

k=1

σk
1σk

i Y i
t−∂iC dt− 1

Y 1
t

m∑

l=1

κl
1

1 + κl
1

∆lCtλ
l(1 + ζl) dt +Q-martingale.

The martingale property of C̃t under Q thus gives

Ct

(
− µ1 +

d∑

k=1

(σk
1 )2 +

m∑

l=1

λl(κl
1)

2

1 + κl
1

dt−
d∑

k=1

σk
1θk dt−

m∑

l=1

κl
1λ

lζl

1 + κl
1

dt
)

+
(
∂tC +

n∑

i=1

µiY
i
t ∂iC +

1
2

n∑

i,j=1

d∑

k=1

σk
i σk

j Y i
t Y j

t ∂ijC
)

dt

+
n∑

i=1

d∑

k=1

σk
i Y i

t ∂iCθk dt +
m∑

l=1

(
∆lCt −

n∑

i=1

κl
iYi∂iC

)
λl(1 + ζl) dt

−
n∑

i=1

d∑

k=1

σk
1σk

i Y i
t ∂iC dt−

m∑

l=1

κl
1

1 + κl
1

∆lCtλ
l(1 + ζl) dt = 0.

After rearrangement, we obtain the desired PDE satisfied by the pre-default pricing function C. ¤

4.3 Replication of a First-to-Default Claim

In what follows, we only consider admissible first-to-default claims and we work under the assump-
tions of Proposition 4.1. Let Ct be a candidate for the arbitrage price of an FTDC (X, Z, τ(1)), as
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given by the risk-neutral valuation formula (11) with Y given by (12). Our goal is to establish the
existence of a self-financing trading strategy φ such that

Ct = Vt(φ) =
n∑

i=1

φi
tY

i
t (13)

on the interval [0, τ(1) ∧ T ]. Equivalently, by virtue of Lemma 3.6

dC̃t = d
(Vt(φ)

Y 1
t

)
=

n∑

i=2

φi
t dY i,1

t . (14)

In that case, we say that a trading strategy φ replicates an FTDC. We will show that any FTDC
can be replicated and thus the pre-default risk-neutral value is also the arbitrage price of an FTDC
prior to default. Put another way, we will establish completeness of the model, in the sense of the
following definition.

Definition 4.2 We say that the market model M = (Y 1, . . . , Y n,Φ) is complete if any first-to-
default claim (X, Z, τ(1)) can be replicated by continuous trading in primary assets.

Proposition 4.2 The Itô differential dC̃t can be represented as follows

dC̃t = (Y 1
t−)−1Pt dw̃t (15)

where

dw̃t =




dW̃ 1
t

...
dW̃ d

t

dM̃1
t

...
dM̃m

t




and Pt = [P1
t ,P

2
t ] where in turn the 1× d vector P1

t equals

P1
t =

[ ∑n
i=1 σ1

i Y i
t−∂iC − σ1

1Ct− . . .
∑n

i=1 σd
i Y i

t−∂iC − σd
1Ct−

]

and the 1×m vector P2
t is given by

P2
t =

[
∆1Ct−κ1

1Ct−
1+κ1

1
. . .

∆mCt−κm
1 Ct−

1+κm
1

]
.

Proof. Let C̃t = Ct(Y 1
t )−1 be the relative price of the claim. Since the drift term in dynamics of C̃

under Q vanishes, we have (see the proof of Proposition 4.1)

dC̃t =
1

Y 1
t−

{ d∑

k=1

( n∑

i=1

σk
i Y i

t−∂iC − σk
1Ct−

)
dW̃ k

t +
m∑

l=1

∆lCt − κl
1Ct−

1 + κl
1

dM̃ l
t

}
,

and this yields (15). ¤

The next result is an immediate consequence of Corollary 3.1. Recall that the matrix At was
defined in Lemma 3.5.

Lemma 4.2 The joint dynamics of relative prices Y i,1
t , i = 2, . . . , n can be represented as follows

dyt = Yt−At dw̃t



18 PDE Approach to Basket Credit Derivatives

where yt is the (n− 1)× 1 vector

yt =




Y 2,1
t
...

Y n,1
t




and the diagonal (n− 1)× (n− 1) matrix Yt− equals

Yt− =




Y 2,1
t− . . . 0
...

. . .
...

0 . . . Y n,1
t−


 .

Proposition 4.3 Consider a first-to-default claim (X, Z, τ(1)) with the pricing function C. The
claim can be replicated by the self-financing trading strategy φ = (φ1, . . . , φn) where

(φ2
t , . . . , φ

n
t ) = (Y 1

t−)−1PtY−1
t A−1

t

and

φ1
t = (Y 1

t )−1
(
Ct −

n∑

i=2

φi
tY

i
t

)
.

Proof. Recall that we assumed that A−1
t exists. We thus have that dw̃t = A−1

t Y−1
t dyt where Y−1

t−
is the inverse of Yt−. Hence we can rewrite equation (15) as follows

dC̃t = (Y 1
t−)−1PtY−1

t A−1
t dyt. (16)

Let us denote φ̃t = (φ2
t , . . . , φ

n
t ). By combining (14) with (16), we obtain

dC̃t = (Y 1
t−)−1PtY−1

t A−1
t dyt = φ̃t dyt =

n∑

i=2

φi
t dY i,1

t .

This yields the first equality. The second equality follows from (13). ¤

4.4 Examples

To provide a better insight into our results, we provide in this section few examples. In all cases
considered below, we shall assume that the model parameters are such that the corresponding matrix
At is non-singular for every t ∈ [0, T ]. Also, we shall postulate the the pre-default intensities are
strictly positive.

4.4.1 Four Assets and Two Defaults

We consider a market model with four primary assets that are driven by two possible sources of
default and a one-dimensional Brownian motion. We thus have under the real-world probability P,
for i = 1, . . . , 4,

dY i
t = Y i

t−
(
µi(t) dt + σ1

i (t) dW 1
t +

2∑

l=1

κl
i(t) dM l

t

)
.

Note that condition n = m + d + 1 is satisfied and the matrix At becomes

At =




σ1
1 − σ1

2
κ1
1−κ1

2
1+κ1

1

κ2
1−κ2

2
1+κ2

1

σ1
1 − σ1

3
κ1
1−κ1

3
1+κ1

1

κ2
1−κ2

3
1+κ2

1

σ1
1 − σ1

4
κ1
1−κ1

4
1+κ1

1

κ2
1−κ2

4
1+κ2

1


 .
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Assuming that the matrix At is non-singular and λl
t 6= 0 for t ∈ [0, T ], we find easily that the unique

martingale measure Q, in the sense of Definition 3.1, is given by

dQ
dP

= ET

( ∫ .

0

θ1
u dW 1

u

) 2∏

l=1

ET

( ∫ .

0

ζl
u dM l

u

)

where θ1, ζ1 and ζ2 are given by 


θ1

λ1ζ1

λ2ζ2


 = A−1

t bt

with

bt =




µ2 − µ1 + σ1
1(σ1

1 − σ1
2) +

∑2
l=1 λl(κl

1 − κl
2)

κl
1

1+κl
1

µ3 − µ1 + σ1
1(σ1

1 − σ1
3) +

∑2
l=1 λl(κl

1 − κl
3)

κl
1

1+κl
1

µ4 − µ1 + σ1
1(σ1

1 − σ1
4) +

∑2
l=1 λl(κl

1 − κl
4)

κl
1

1+κl
1


 .

The dynamics of relative prices Y i,1, i = 2, 3, 4, under Q are given by Corollary 3.1, that is,

dY i,1
t = Y i,1

t−
(
(σ1

i − σ1
1) dW̃ 1

t −
2∑

l=1

κl
i − κl

1

1 + κl
1

dM̃ l
t

)
.

Let us consider a first-to-default claim (X, Z, τ(1)) where Z = (Z1, Z2). Then the vector Pt becomes

Pt =
[ ∑4

i=1 σ1
i Y i

t−∂iC − σ1
1Ct−

∆1Ct−κ1
1Ct−

1+κ1
1

∆2Ct−κ2
1Ct−

1+κ2
1

]

where the function C solves the pre-default pricing PDE of Proposition 4.1 (as usual, we implicitly
assume that the pre-default pricing function C is sufficiently regular). According to Proposition 4.3,
the replicating strategy for an FTDC (X,Z, τ(1)) can be found from the equality

(φ2
t , φ

3
t , φ

4
t ) = (Y 1

t−)−1PtY−1
t A−1

t ,

combined with the formula

φ1
t = (Y 1

t )−1
(
Ct −

4∑

i=2

φi
tY

i
t

)
.

4.4.2 Three Assets and Two Defaults

This example will serve to highlight the effects of defaults. We consider a model with three primary
assets, none of which is dependent upon Brownian motion. Thus the assets dynamics contain only
drift and the possibility of default. Specifically, for i = 1, 2, 3,

dY i
t = Y i

t−
(
µi(t) dt +

2∑

l=1

κl
i(t) dM l

t

)
.

By applying Proposition 4.1, we obtain the following pricing PDE

∂tC +
3∑

i=1

(
µi −

2∑

l=1

κl
iλ

l(1 + ζl)
)
yi∂iC − (µ1 + β)C +

2∑

l=1

λl 1 + ζl

1 + κl
1

∆lC = 0

where

β =
2∑

l=1

λlκl
1

(
1− 1 + ζl

1 + κl
1

)
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and, for l = 1, 2,
∆lC = Zl(t, y1(1 + κl

1), . . . , y3(1 + κl
3))− C(t, y1, . . . , y3).

Solving for ζ1 and ζ2, we obtain

[
λ1ζ1

λ2ζ2

]
=




κ1
1−κ1

2
1+κ1

1

κ2
1−κ2

2
1+κ2

1
κ1
1−κ1

3
1+κ1

1

κ2
1−κ2

3
1+κ2

1



−1 

 µ2 − µ1 +
∑2

l=1 λl(κl
1 − κl

2)
κl
1

1+κl
1

µ3 − µ1 +
∑2

l=1 λl(κl
1 − κl

3)
κl
1

1+κl
1


 ,

provided that the matrix At is non-singular, i.e.,

a := |At| = (κ1
1 − κ1

2)(κ
2
1 − κ2

3)− (κ1
1 − κ1

3)(κ
2
1 − κ2

2)
(1 + κ1

1)(1 + κ2
1)

6= 0.

Assuming that a 6= 0, we further obtain

ζ1 =
1

aλ1

{κ2
1 − κ2

3

1 + κ2
1

(
µ2 − µ1 +

2∑

l=1

λl(κl
1 − κl

2)
κl

1

1 + κl
1

)

− κ2
1 − κ2

2

1 + κ2
1

(
µ3 − µ1 +

2∑

l=1

λl(κl
1 − κl

3)
κl

1

1 + κl
1

)}

and

ζ2 =
1

aλ2

{
− κ1

1 − κ1
2

1 + κ1
1

(
µ2 − µ1 +

2∑

l=1

λl(κl
1 − κl

2)
κl

1

1 + κl
1

)

+
κ1

1 − κ1
3

1 + κ1
1

(
µ3 − µ1 +

2∑

l=1

λl(κl
1 − κl

3)
κl

1

1 + κl
1

)}
.

We now have under Q, for i = 2, 3,

dY i,1
t = Y i,1

t−
( 2∑

l=1

κl
i − κl

1

1 + κl
1

dM̃ l
t

)

and the vector Pt reduces to

Pt =
[

∆1Ct−κ1
1Ct−

1+κ1
1

∆2Ct−κ2
1Ct−

1+κ2
1

]
.

The replicating strategy for an FTDC can be found as in the preceding example.

4.4.3 Risk-free Asset, Default-free Asset, Defaultable Asset with Non-zero Recovery

We shall now consider an example that is equivalent to that used in Bielecki et al. [3]. Let Y 1 be a
risk-free asset, Y 2 be a default-free asset and let Y 3 be a defaultable asset, so that

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
µ2 dt + σ1

2 dW 1
t

)
,

dY 3
t = Y 3

t−
(
µ3 dt + σ1

3 dW 1
t + κ1

3 dM1
t

)
.

It is easily seen that the relative prices Y 2,1 and Y 3,1 satisfy

dY 2,1
t = Y 2,1

t

(
(µ2 − r) dt + σ1

2 dW 1
t

)
,

dY 3,1
t = Y 3,1

t−
(
(µ3 − r) dt + σ1

3 dW 1
t + κ1

3 dM1
t

)
,
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and the pre-default pricing PDE of Proposition 4.1 reduces to

∂tC +
1
2

3∑

i,j=2

σ1
i σ1

j yiyj∂ijC + ry1∂1C +
(
µ2 + σ1

2θ1
)
y2∂2C

+
(
µ3 + σ1

3θ1 − κ1
3λ

1(1 + ζ1)
)
y3∂3C − rC + λ1(1 + ζ1)∆1C = 0

where

∆1C = Z1(t, y1, y2, y3(1 + κ1
3))− C(t, y1, y2, y3)

and θ1 and ζ1 are given by

[
θ1

λ1ζ1

]
=

[ −σ1
2 0

−σ1
3 −κ1

3

]−1 [
µ2 − r
µ3 − r

]
.

Assuming that σ1
2 > 0, κ1

3 6= 0 and λ1 > 0, we obtain the unique solution for θ1 and ζ1

θ1 =
r − µ2

σ1
2

,

ζ1 = −σ1
2(µ3 − r)− σ1

3(µ2 − r)
σ1

2κ1
3λ

1
,

which coincides with the result found in Bielecki et al. [3]. Using the Girsanov theorem and recalling
that

dW̃ 1
t = dW 1

t − θ1 dt, dM̃1
t = dM1

t − ζ1λ1 dt,

we find that the dynamics of assets prices under Q are

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t (r dt + σ1
2 dW̃ 1

t ),

dY 3
t = Y 3

t (r dt + σ1
3 dW̃ 1

t + κ1
3 dM̃1

t ).

We can now substitute the values for θ1 and ζ1 into pre-default pricing PDE satisfied by the function
C(t, y1, y2, y3) to obtain

∂tC +
1
2

3∑

i,j=2

σ1
i σ1

j yiyj∂ijC + ry1∂1C + ry2∂2C + ry3∂3C − rC + λ1(1 + ζ1)∆1C = 0.

The replicating strategy satisfies

(φ2
t , φ

3
t ) =

1
Y 1

t−

[
σ1

2Y 2
t−∂2C + σ1

3Y 3
t−∂3C ∆1Ct

] [
Y 1,2

t− 0
0 Y 1,3

t−

] [ −σ1
2 0

−σ1
3 −κ1

3

]−1

so that

φ2
t =

σ1
3Y 2

t ∆1Ct − (σ1
2Y 2

t−∂2C + σ1
3Y 3

t−∂3C)Y 3
t−

σ1
2κ1

3Y
2
t−Y 3

t−
, φ3

t =
∆1Ct

Y 3
t−κ1

3

.

As usual, the component φ1
t satisfies

φ1
t = (Y 1

t )−1
(
Ct −

3∑

i=2

φi
tY

i
t

)
.
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